
Beetlebot 3 in 1 Robot

keyestudio WiKi

Jan 23, 2024

CONTENTS:

1 1. Libraries, All Codes and Other Details: 3

2 2. Description 5

3 3. Features 7

4 4. Specification 9

5 5. Kit List 11

6 6. Keyestudio Nano Board 19
6.1 1. Description: . 19
6.2 2. Specification: . 19
6.3 3. Pins: . 20

7 7. PCB Board 25

8 Arduino tutorial 27
8.1 1. Get started with Arduino . 27
8.2 2. Assemble Beetlebot Robot . 28
8.3 3. Projects . 54

8.3.1 Project 1: LED Blinking . 54
8.3.2 Project 2: 6812 RGB . 56
8.3.3 Project 3: Play Music . 61
8.3.4 Project 4: 8*8 Dot Matrix . 65
8.3.5 Project 5: Servo Rotation . 75
8.3.6 Project 6: Motor Driving and Speed Control . 78
8.3.7 Project 7: Ultrasonic Sensor . 81
8.3.8 Project 8: Line Tracking Sensor . 97
8.3.9 Project 9: Light Following . 103
8.3.10 Project 10: IR Remote Control . 110
8.3.11 Project 11: WIFI Control . 123

9 Kidsblock tutorial 179
9.1 1. Getting started with Kidsblock software . 179

9.1.1 1. Instruction: . 179
9.1.2 2. Download and install KidsBlock software . 179
9.1.3 3. Interface Setting . 179

9.2 2. Assemble Beetlebot Robot . 186
9.3 3. Projects . 212

9.3.1 Project 1: LED Blinking . 212

i

9.3.2 Project 2: 6812 RGB . 214
9.3.3 Project 3: Play Music . 217
9.3.4 Project 4: 8*8 Dot Matrix . 219
9.3.5 Project 5: Servo Rotation . 230
9.3.6 Project 6: Motor Driving and Speed Control . 234
9.3.7 Project 7: Ultrasonic Sensor . 239
9.3.8 Project 8: Line Tracking Sensor . 254
9.3.9 Project 9: Light Following . 261
9.3.10 Project 10: IR Remote Control . 269
9.3.11 Project 11: WIFI Control . 281

10 Soccer tutorial 323
10.1 1. Description . 324
10.2 2. How to install the soccer robot: . 324
10.3 3. Install a soccer goal . 343
10.4 4. Codes: . 347

10.4.1 (1)Arduino Code . 347
10.4.2 (2)Kidsblock Code . 351

10.5 5. Test Result . 352

11 Catapul tutorial 353
11.1 1. Description . 354
11.2 2. How to build up a catapult . 354
11.3 3. Code: . 382

11.3.1 (1) Arduino Code . 382
11.3.2 (2) Kidsblock Code . 386

11.4 4. Test Result . 387

12 Handling tutorial 389
12.1 1. Description . 390
12.2 2. How to build up a handling robot: . 390
12.3 3. Code: . 408

12.3.1 (1)Arduino Code . 408
12.3.2 (3)Kidsblock Code** . 412

12.4 4. Test Result . 413

ii

Beetlebot 3 in 1 Robot

CONTENTS: 1

Beetlebot 3 in 1 Robot

2 CONTENTS:

CHAPTER

ONE

1. LIBRARIES, ALL CODES AND OTHER DETAILS:

• Arduino_Libraries

• All_Codes

• Other_Details

3

Beetlebot 3 in 1 Robot

4 Chapter 1. 1. Libraries, All Codes and Other Details:

CHAPTER

TWO

2. DESCRIPTION

The Beetlebot smart robot, compatible with LEGO building blocks, is a STEM educational product which can auto-
matically dodge obstacles, follow black lines and light to move. Besides, it has three cool forms such as the soccer
robot, the siege robot, the handling robot. As for beginners, they can create whatever they want by LEGO building
blocks.

Various improvements have been made on the Beetlebot car in comparison with other smart cars. It integrates a motor
driver and a large number of sensors and is easy to assemble.

Going forward, not only can it impart basic programming knowledge and AI application to children and the youth, but
also it can cultivate their creativity, hands-on ability, problem-solving capability, interpersonal communication as well
as teamwork ability. With this kit, you have a chance to experience soccer games using your own robots.

5

Beetlebot 3 in 1 Robot

6 Chapter 2. 2. Description

CHAPTER

THREE

3. FEATURES

• Compatible with LEGO building blocks: generate diverse forms with LEGO blocks and sensors.

• Three forms: a soccer robot, a siege engine, a handling robot.

• Various functions: Pictures display, atmosphere light control, line tracking, obstacle avoidance, light following ,
IR control and WIFI control.

• Easy to build: embedded design on car body; wire up the car body with a few steps.

• High compatibility: reserve ports for the Raspberry Pico board and the ESP32 control board.

• Charging function: integrate a circuit for 18650 batteries, low-cost and effective.

• WiFi Control: adopt WiFi control, can finish tailor-made software development.

• App: compatible with Android and iOS systems, with aesthetic page and flexible control system.

7

Beetlebot 3 in 1 Robot

8 Chapter 3. 3. Features

CHAPTER

FOUR

4. SPECIFICATION

Working voltage: 5V

Input voltage: 2.5V~4.2V (lithium battery)

Maximum output current: 3A

Maximum power consumption: 15W (T=80℃)

Motor speed: 5V 200 rpm / min

Motor drive form: dual H-bridge

Ultrasonic sensing angle: <15 degrees

Ultrasonic detection distance: 2cm-400cm

IR control distance: about 7 meters (measured)

Size: 176mm*137mm*130mm

Environmental protection attributes: ROHS

9

Beetlebot 3 in 1 Robot

10 Chapter 4. 4. Specification

CHAPTER

FIVE

5. KIT LIST

Picture Name QTY

1 Keyestudio Nano CH340 Development Board 1

2 ESP8266 Wifi Module 1

3 Keyestudio Photoresistor 2

4 270° Servo 1
continues on next page

11

Beetlebot 3 in 1 Robot

Table 1 – continued from previous page
Picture Name QTY

5 Keyestudio Development Board 1

6 Keyestudio Driver Board 1

7 LEGO Bulk Lot 1
continues on next page

12 Chapter 5. 5. Kit List

Beetlebot 3 in 1 Robot

Table 1 – continued from previous page
Picture Name QTY

8 Acrylic Board 1

9 MD0487 Acrylic Board for Ultrasonic Sensor 1

10 Acrylic Board for Servo 1
continues on next page

13

Beetlebot 3 in 1 Robot

Table 1 – continued from previous page
Picture Name QTY

11 4.5V 200R Motor 2

12 8*8 Dot Matrix Display 1

13 Aluminum 2

14 9G 180°Servo 1
continues on next page

14 Chapter 5. 5. Kit List

Beetlebot 3 in 1 Robot

Table 1 – continued from previous page
Picture Name QTY

15 Car Wheel 2

16 HC-SR04 Ultrasonic Sensor 1

17 Screwdriver 1

18 W420 Universal Wheel 1

19 JMFP-4 17-Key Remote Control 1

20 Black USB Cable 1

21 Screwdriver 1
22 3P F-F Dupont Wire 2

23 4P F-F Dupont Wire 1

24 HX2.54mm-4P Dupont Wire 1
continues on next page

15

Beetlebot 3 in 1 Robot

Table 1 – continued from previous page
Picture Name QTY

25 Winding Pipe 1

26 10P XH2.54 Dupont Wire 1

27 Acrylic Gasket 6

28 M3*40MM Dual Pass Copper Pillars 4

29 M1.2*5MM Round Head Screws 6
continues on next page

16 Chapter 5. 5. Kit List

Beetlebot 3 in 1 Robot

Table 1 – continued from previous page
Picture Name QTY

30 M1.4 Nuts 6

31 M1.4*10MM Round Head Screws 6

32 M2 Nuts 3

33 M2*8MM Round Head Screws 3

34 M3*10MM Round Head Screws 6

35 M3*6MM Round Head Screws 11

36 M3 Nuts 9

37 M3*30MM Round Head Screws 4

38 Soccer Ball 1
continues on next page

17

Beetlebot 3 in 1 Robot

Table 1 – continued from previous page
Picture Name QTY

39 W1515 Universal Wheel 1

40 18650 Batteries KS0543F includes batteriesKS0543 doesn’t conclude batteries 1

41 USB to ESP-01S WIFI Module Expansion Board 1

42 M2.3*16MM Round Head Self-tapping Screw 2

18 Chapter 5. 5. Kit List

CHAPTER

SIX

6. KEYESTUDIO NANO BOARD

6.1 1. Description:

The processor core of Keyestudio Nano CH340 is ATMEGA328P-AU. It is as same as the official Arduino Nano in
addition to driver file and USB to serial chip (CH340G).

It also has 14 digital input / output interfaces (6 of which can be used as PWM output), 8 analog input interfaces, 1
16MHz crystal oscillator, 1 mini USB port, 1 ICSP interface, and a reset button.

The ICSP interface is used to program the Atmega328P-Au. We can supply power with a USB cable, the port VIN
GND (DC 7-12V) and GND

6.2 2. Specification:

MicrocontrollerATMEGA328P-AU

Operating Voltage: 5V

Input Voltage (recommended)DC 7-12V

Digital I/O Pins14 (D0-D13)

PWM Digital I/O Pins6 (D3 D5 D6 D9 D10 D11)

Analog Input Pins: 8 (A0-A7)

DC Current per I/O Pin: 40 mA

Flash Memory32 KB of which 2 KB used by bootloader

SRAM: 2 KB

EEPROM: 1 KB

Clock Speed: 16 MHz

LED_BUILTIN: D13

19

Beetlebot 3 in 1 Robot

6.3 3. Pins:

20 Chapter 6. 6. Keyestudio Nano Board

Beetlebot 3 in 1 Robot

6.3. 3. Pins: 21

Beetlebot 3 in 1 Robot

1 ICSP
Header

ICSP(In-Circuit Serial Programming) HeaderICSP is the AVR, an micro-program header
consisting of MOSI, MISO, SCK, RESET, VCC, and GND. It is often called the SPI (se-
rial peripheral interface) and can be considered an “extension” of output. In fact, slave the
output devices under the SPI bus host.When connecting to PC, program the firmware to
ATMEGA328P-AU.

2 LED
indi-
ca-
torRX

Onboard you can find the label: RX(receive)When control board communicates via serial port, re-
ceive the message, RX led flashes.

3 LED
indi-
ca-
torTX

Onboard you can find the label: TX (transmit)When control board communicates via serial port, send
the message, TX led flashes.

4 LED
indi-
cator-
POW

Power up the control board, LED on, otherwise LED off.

5 LED
indi-
ca-
torL

There is a built-in LED driven by digital pin 13. When the pin is HIGH value, the LED is on, when
the pin is LOW, it’s off.

6 RX0D0TX1D1D2-
D13

It has 14 digital input/output pins D0-D13 (of which 6 can be used as PWM outputs). These pins can
be configured as digital input pin to read the logic value (0 or 1). Or used as digital output pin to drive
different modules like LED, relay, etc.

7 RST Reset pin: connect external button. The function is the same as RESET button.
8 MEGA

328P
Each board has its own microcontroller. You can regard it as the brain of your board.Microcontrollers
are usually from ATMEL. Before you load a new program on the Arduino IDE, you must know what IC
is on your board. This information can be checked at the top surface of IC.The board’s microcontroller
is ATMEGA328P-AU. More info.

9 MINI
USB

The board can be powered via Mini-B USB connection. Also upload the program to the board via
USB port.

10 3V3
pin

Provides 3.3V voltage output

11 REF Reference external voltage (0-5 volts) for the analog input pins. Used with analogReference().
12 A0-

A7
The Nano has 8 Analog Pins, labeled A0 through A7.

13 5V Provides 5V voltage output
14 GND Ground pin
15 VIN Input an external voltage DC7-12V to power the board.
16 Reset

But-
ton

Used to reset the control board

17 CH340GUSB-to-serial port chip, converting the USB signal into Serial port signal.
18 AMS1117Convert the external voltage input DC7-12V into DC5V, then transfer it to the processor and other

elements.

Specialized Functions of Some Pins:

• Serial communication: RX0 and TX1.

• PWM (Pulse-Width Modulation): D3, D5, D6, D9, D10, D11

• External Interrupts: D2 (interrupt 0) and D3 (interrupt 1)

22 Chapter 6. 6. Keyestudio Nano Board

https://www.arduino.cc/reference/en/language/functions/analog-io/analogreference/

Beetlebot 3 in 1 Robot

• SPI communication: D10 (SS), D11 (MOSI), D12 (MISO), D13 (SCK).

• IIC communication: A4 (SDA); A5(SCL)

6.3. 3. Pins: 23

Beetlebot 3 in 1 Robot

24 Chapter 6. 6. Keyestudio Nano Board

CHAPTER

SEVEN

7. PCB BOARD

25

Beetlebot 3 in 1 Robot

Turn the DIP switch to the OFF end before installing or removing batteries.

26 Chapter 7. 7. PCB Board

CHAPTER

EIGHT

ARDUINO TUTORIAL

8.1 1. Get started with Arduino

Click the link to start learning how to download software, install drivers, upload code, and the ways of install
library files.

https://getting-started-with-arduino.readthedocs.io

27

https://getting-started-with-arduino.readthedocs.io/en/latest/Arduino%20IDE%20Tutorial.html

Beetlebot 3 in 1 Robot

8.2 2. Assemble Beetlebot Robot

Step 1

28 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Step 2

8.2. 2. Assemble Beetlebot Robot 29

Beetlebot 3 in 1 Robot

30 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Step 3

8.2. 2. Assemble Beetlebot Robot 31

Beetlebot 3 in 1 Robot

32 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Step 4

8.2. 2. Assemble Beetlebot Robot 33

Beetlebot 3 in 1 Robot

Step 5

34 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Left Motor Right Motor
L R

8*8 Dot Matrix Display PCB
G G
5V 5V
SDA SDA
SCL SCL

8.2. 2. Assemble Beetlebot Robot 35

Beetlebot 3 in 1 Robot

36 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Step 6

8.2. 2. Assemble Beetlebot Robot 37

Beetlebot 3 in 1 Robot

Step 7

38 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.2. 2. Assemble Beetlebot Robot 39

Beetlebot 3 in 1 Robot

Step 8

40 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Step 9

8.2. 2. Assemble Beetlebot Robot 41

Beetlebot 3 in 1 Robot

Adjust the angle of the servo to 90 degree.

Servo PCB
Brown line G
Red line 5V
Orange line S1D9

Copy the below code to copy into the Arduino IDE and upload it to the motherboard, or just open the code provided
by us and upload it to the motherboard.

int servoPin = 9; //Define the pins of the steering gear
void setup() {
pinMode(servoPin, OUTPUT); //steering pin is set to output
servopulse(servoPin, 90); //Turn it to 90 degrees
delay(300); //delay 0.3S

}
void loop(){
}
void servopulse(int pin, int myangle) { //Impulse function
int pulsewidth = map(myangle, 0, 180, 500, 2500); //Map Angle to pulse width
for (int i = 0; i < 5; i++) { //Output a few more pulses
digitalWrite(pin, HIGH);//Set the steering gear interface level to high
delayMicroseconds(pulsewidth);//Number of microseconds of delayed pulse width value
digitalWrite(pin, LOW);//Lower the level of steering gear interface
delay(20 - pulsewidth / 1000);

}
} digitalWrite(pin, LOW);//Lower the level of steering gear interface

delay(20 - pulsewidth / 1000);
}

}

Keep the ultrasonic sensor parallel to the board

42 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Step 10

8.2. 2. Assemble Beetlebot Robot 43

Beetlebot 3 in 1 Robot

44 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.2. 2. Assemble Beetlebot Robot 45

Beetlebot 3 in 1 Robot

Step 11

46 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Step 12

8.2. 2. Assemble Beetlebot Robot 47

Beetlebot 3 in 1 Robot

48 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.2. 2. Assemble Beetlebot Robot 49

Beetlebot 3 in 1 Robot

Wire up the ultrasonic sensor

Ultrasonic Sensor PCB
Vcc 5V
Trig S2D8
Echo S1D7
Gnd G

50 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Wire up the servo

Servo PCB
Brown line G
Red line 5V
Orange line S1D9

Wire up the left photoresistor

8.2. 2. Assemble Beetlebot Robot 51

Beetlebot 3 in 1 Robot

Left photoresistor PCB
G G
V V
S SA6

Wire up the right photoresistor

Right photoresistor PCB
G G
V V
S SA7

52 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Beetle Robot Car

8.2. 2. Assemble Beetlebot Robot 53

Beetlebot 3 in 1 Robot

We adopt a model 18650 lithium battery with a pointed positive pole, whose power and capacity are not required.

8.3 3. Projects

8.3.1 Project 1: LED Blinking

(1)Description

There is an onboard LED (L) on our Arduino Nano board connected to D13. In this experiment, we will make this
LED blink.

LED blinking is the most basic experimental project for Arduino enthusiasts.

Let’s get started.

(2)Components Required

(3)Knowledge

On-board LED

LED, the abbreviation of light emitting diodes, consists of Ga, As, P, N chemical compounds and so on. It is easy to
control through the IO port(D13) of the Arduino Nano board.

54 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(4)Test Code

/*
Project 01 LED Blinking
Turns an LED on for one second, then off for one second, repeatedly.

*/
int ledPin=13; //Define LED pin to D13
// the setup function runs once when you press reset or power the board

void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(ledPin, OUTPUT);

}

// the loop function runs over and over again forever
void loop() {
digitalWrite(ledPin, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(ledPin, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

(5)Test Result

Upload the test code to the Arduino Nano board and power up with a USB cable. Then the on-board LED will flash.

8.3. 3. Projects 55

Beetlebot 3 in 1 Robot

8.3.2 Project 2: 6812 RGB

(1)Description

There are 4 RGB LEDs can be widely used in the decoration of buildings, bridges, roads, gardens, courtyards and so
on by colors adjustment.

In this experiment, we will demonstrate different lighting effects with them.

(2)Components Required

56 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(3)Knowledge

Working Principle

From the schematic diagram, we can see that these four pixel lighting beads are all connected in series. In fact, no
matter how many they are, we can use a pin to control a light and let it display any color. The pixel point contains a data
latch signal shaping amplifier drive circuit, a high-precision internal oscillator and a 12V high-voltage programmable
constant current control part, which effectively ensures the color of the pixel point light is highly consistent.

The data protocol adopts a single-wire zero-code communication method. After the pixel is powered up and reset, the
S terminal receives the data transmitted from the controller. The first 24bit data sent is extracted by the first pixel and
sent to the data latch of the pixel.

(4)Test Code

The SK6812RGB on the PCB board is controlled by the IO port (A3).

/*
Project 02 SK6812 RGB
4 RGBs for various lighting effects.

*/
#include <Adafruit_NeoPixel.h>

#define PIN A3

// Parameter 1 = number of pixels in strip
// Parameter 2 = Arduino pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
Adafruit_NeoPixel strip = Adafruit_NeoPixel(60, PIN, NEO_GRB + NEO_KHZ800);

// IMPORTANT: To reduce NeoPixel burnout risk, add 1000 uF capacitor across
// pixel power leads, add 300 - 500 Ohm resistor on first pixel's data input
// and minimize distance between Arduino and first pixel. Avoid connecting
// on a live circuit...if you must, connect GND first.

void setup() {
strip.begin();
strip.show(); // Initialize all pixels to 'off'

}

void loop() {
// Some example procedures showing how to display to the pixels:

(continues on next page)

8.3. 3. Projects 57

Beetlebot 3 in 1 Robot

(continued from previous page)

colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color(0, 255, 0), 50); // Green
colorWipe(strip.Color(0, 0, 255), 50); // Blue
// Send a theater pixel chase in...
theaterChase(strip.Color(127, 127, 127), 50); // White
theaterChase(strip.Color(127, 0, 0), 50); // Red
theaterChase(strip.Color(0, 0, 127), 50); // Blue

rainbow(20);
rainbowCycle(20);
theaterChaseRainbow(50);

}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {

strip.setPixelColor(i, c);
strip.show();
delay(wait);

}
}

void rainbow(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));

}
strip.show();
delay(wait);

}
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));

}
strip.show();
delay(wait);

}
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {

(continues on next page)

58 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

strip.setPixelColor(i+q, c); //turn every third pixel on
}
strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off

}
}

}
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel((i+j) % 255)); //turn every third pixel on

}
strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off

}
}

}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
if(WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}

}

8.3. 3. Projects 59

Beetlebot 3 in 1 Robot

(5)Test Result

Upload the test code to the Arduino Nano board and power up by a USB cable. Then the four RGB lights on the PCB
demonstrate multi-color light effect.

60 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.3.3 Project 3: Play Music

(1)Description

There is a power amplifier component on the expansion board, which is often used to play music and serve as an external
amplifying device for music playback devices.

In this experiment, we use the speaker amplifier component to play music.

(2)Components Required

(3)Knowledge

Power amplifier modules(equivalent to a passive buzzer) don’t have internal oscillation circuits.

The power amplifier module can chime sounds with different frequency when power it up.

(4)Test Code

The speaker component on the PCB board is controlled by the D3 of the Arduino Nano board.

/*
Project 03 Buzzer
Buzzer plays music
*/
#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69

(continues on next page)

8.3. 3. Projects 61

Beetlebot 3 in 1 Robot

(continued from previous page)

#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397

(continues on next page)

62 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978
#define REST 0
int tempo=114; // change this to make the song slower or faster
int buzzer = 3;// initializes digital I/O PIN to control the buzzer
// notes of the moledy followed by the duration
// a 4 means a quarter note, 8 an eighteenth , 16 sixteenth, so on
// !!negative numbers are used to represent dotted notes
// so -4 means a dotted quarter note, that is, a quarter plus an eighteenth
int melody[] = {
NOTE_E4,4, NOTE_E4,4, NOTE_F4,4, NOTE_G4,4,//1
NOTE_G4,4, NOTE_F4,4, NOTE_E4,4, NOTE_D4,4,
NOTE_C4,4, NOTE_C4,4, NOTE_D4,4, NOTE_E4,4,
NOTE_E4,-4, NOTE_D4,8, NOTE_D4,2,
NOTE_E4,4, NOTE_E4,4, NOTE_F4,4, NOTE_G4,4,//4
NOTE_G4,4, NOTE_F4,4, NOTE_E4,4, NOTE_D4,4,
NOTE_C4,4, NOTE_C4,4, NOTE_D4,4, NOTE_E4,4,
NOTE_D4,-4, NOTE_C4,8, NOTE_C4,2,
NOTE_D4,4, NOTE_D4,4, NOTE_E4,4, NOTE_C4,4,//8
NOTE_D4,4, NOTE_E4,8, NOTE_F4,8, NOTE_E4,4, NOTE_C4,4,
NOTE_D4,4, NOTE_E4,8, NOTE_F4,8, NOTE_E4,4, NOTE_D4,4,
NOTE_C4,4, NOTE_D4,4, NOTE_G3,2,
NOTE_E4,4, NOTE_E4,4, NOTE_F4,4, NOTE_G4,4,//12
NOTE_G4,4, NOTE_F4,4, NOTE_E4,4, NOTE_D4,4,
NOTE_C4,4, NOTE_C4,4, NOTE_D4,4, NOTE_E4,4,
NOTE_D4,-4, NOTE_C4,8, NOTE_C4,2

};
// sizeof gives the number of bytes, each int value is composed of two bytes (16 bits)
// there are two values per note (pitch and duration), so for each note there are four␣
→˓bytes
int notes=sizeof(melody)/sizeof(melody[0])/2;
// this calculates the duration of a whole note in ms (60s/tempo)*4 beats

(continues on next page)

8.3. 3. Projects 63

Beetlebot 3 in 1 Robot

(continued from previous page)

int wholenote = (60000 * 4) / tempo;
int divider = 0, noteDuration = 0;
void setup() {
// iterate over the notes of the melody
// remember, the array is twice the number of notes (notes + durations)
for (int thisNote = 0; thisNote < notes * 2; thisNote = thisNote + 2) {
// calculates the duration of each note
divider = melody[thisNote + 1];
if (divider > 0) {
noteDuration = (wholenote) / divider; // regular note, just proceed
} else if (divider < 0) {
// dotted notes are represented with negative durations!!
noteDuration = (wholenote) / abs(divider);
noteDuration *= 1.5; // increases the duration in half for dotted notes

}
// we only play the note for 90% of the duration, leaving 10% as a pause
tone(buzzer, melody[thisNote], noteDuration*0.9);

// Wait for the specief duration before playing the next note
delay(noteDuration);
noTone(buzzer); // stop the waveform generation before the next note

}
}
void loop() {
// if you want to repeat the song forever,
// just paste the setup code here instead.
}

(5)Test Result

Upload the test code to the Arduino Nano board and power up with a USB cable. Then the power amplifier component
will play music.

64 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.3.4 Project 4: 8*8 Dot Matrix

(1)Description

Composed of LED emitting tube diodes, the 8*8 LED dot matrix are applied widely to public information display like
advertisement screen and bulletin board, by controlling LED to show words, pictures and videos, etc.

There are different types of matrices, including 4×4, 8×8 and 16×16 and etc. It contains 64 LEDs.

The inner structure of 8×8 dot matrix is shown below.

8.3. 3. Projects 65

Beetlebot 3 in 1 Robot

Every LED is installed on the cross point of row line and column line. When the voltage on a row line increases, and
the voltage on the column line reduces, the LED on the cross point will light up. 8×8 dot matrix has 16 pins. Put the
silk-screened side down and the numbers are 1, 8, 9 and 16 in anticlockwise order as marked below.

66 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

The definition inner pins are shown below:

8.3. 3. Projects 67

Beetlebot 3 in 1 Robot

For instance, to light up the LED on row 1 and column 1, you should increase the voltage of pin 9 and reduce the voltage
of pin 13.

(2)Components Required

68 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(3)HT16K33 8X8 Dot Matrix

The HT16K33 is a memory mapping and multi-purpose LED controller driver. The max. Display segment numbers
in the device is 128 patterns (16 segments and 8 commons) with a 13*3 (MAX.) matrix key scan circuit. The soft-
ware configuration features of the HT16K33 makes it suitable for multiple LED applications including LED modules
and display subsystems. The HT16K33 is compatible with most microcontrollers and communicates via a two-line
bidirectional I2C-bus.

The picture below is the working schematic of HT16K33 chip.

We design the drive module of 8*8 dot matrix based on the above principle. We could control the dot matrix by I2C
communication and two pins of microcontroller, according to the above diagram.

(4)Specification:

Input voltage: 5V

Rated input frequency: 400KHZ

Input power: 2.5W

Input current: 500mA

(5)Introduction for Modulus Tool

The online version of dot matrix modulus tool:

http://dotmatrixtool.com/#

Open the link to enter the following page.

8.3. 3. Projects 69

http://dotmatrixtool.com/

Beetlebot 3 in 1 Robot

The dot matrix is 8*8 in this project. So set the height to 8, width to 8; as shown below.

70 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Click Byte order to select Row major

8.3. 3. Projects 71

Beetlebot 3 in 1 Robot

Generate hexadecimal data from the pattern

As shown below, the left button of the mouse is for selection while the right is for canceling. Thus you could use them
to draw the pattern you want, then click Generate, to yield the hexadecimal data needed.

72 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

The generated hexadecimal code0x00, 0x66, 0x00, 0x00, 0x18, 0x42, 0x3c, 0x00) is what will be displayed, so you
need to save it for next procedure.

(6)Wiring up

8*8 Dot matrix display PCB Board
G G
5V 5V
SDA SDA
SCL SCL

(7)Test Code

The 8*8 dot matrix is controlled by A4SDAand A5SCLof the Arduino Nano board.

/*
Project 04 8*8 Dot Matrix
8*8 dot matrix screen to display patterns
*/
#include <ks_Matrix.h>
Matrix myMatrix(A4,A5); //set pins to communication pins

(continues on next page)

8.3. 3. Projects 73

Beetlebot 3 in 1 Robot

(continued from previous page)

// define an array
uint8_t LedArray1[8]={0x00, 0x66, 0x00, 0x00, 0x18, 0x42, 0x3c, 0x00};
uint8_t LEDArray[8]; //define an array(by modulus tool) without initial value

void setup(){
myMatrix.begin(0x70); //communication address
myMatrix.clear(); //clear matrix

}

void loop(){
for(int i=0; i<8; i++) // there is eight data, loop for eight times
{

LEDArray[i]=LedArray1[i]; //Call the emoticon array data in the subroutine LEDArray
for(int j=7; j>=0; j--) //Every data(byte) has 8 bit, therefore, loop for eight times

{
if((LEDArray[i]&0x01)>0) //judge if the last bit of data is greater than 0
{
myMatrix.drawPixel(j, i,1); //light up the corresponding point

}
else //otherwise
{
myMatrix.drawPixel(j, i,0); //turn off the corresponding point

}
LEDArray[i] = LEDArray[i]>>1; //LEDArray[i] moves right for one bit to judge the␣

→˓previous one bit
}

}
myMatrix.writeDisplay(); // dot matrix shows

}

(8)Test Result

Upload the test code to the Arduino Nano board and power up by a USB cable, the 8*8 dot matrix display will show
a“smile”pattern.

74 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.3.5 Project 5: Servo Rotation

(1)Description

There are two servos on the car. We take the servo connected to pin D9 as an example.

The servo is a motor that can rotate very accurately. It has been widely applied to toy cars, remote control helicopters,
airplanes, robots and other fields. In this project, we will use the Nano motherboard to control the servo to spin.

(2)Components Required

8.3. 3. Projects 75

Beetlebot 3 in 1 Robot

(3)Knowledge

Servo motor is a position control rotary actuator. It mainly consists of a housing, a circuit board, a core-less motor,
a gear and a position sensor. Its working principle is that the servo receives the signal sent by MCU or receiver and
produces a reference signal with a period of 20ms and width of 1.5ms, then compares the acquired DC bias voltage to
the voltage of the potentiometer and obtain the voltage difference output.

When the motor speed is constant, the potentiometer is driven to rotate through the cascade reduction gear, which leads
that the voltage difference is 0, and the motor stops rotating. Generally, the angle range of servo rotation is 0° –180 °

The rotation angle of servo motor is controlled by regulating the duty cycle of PWM (Pulse-Width Modulation) signal.
The standard cycle of PWM signal is 20ms (50Hz). Theoretically, the width is distributed between 1ms-2ms, but in
fact, it’s between 0.5ms-2.5ms. The width corresponds the rotation angle from 0° to 180°. But note that for different
brand motors, the same signal may have different rotation angles.

In general, servo has three lines in brown, red and orange. The brown wire is grounded, the red one is a positive pole
line and the orange one is a signal line.

76 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(4)Wire up

Servo PCB Board
Brown G
Red 5V
Orange S1D9

(5)Test Code

The servo of the ultrasonic sensor is controlled by the GPIO9 of the Pico board.

/*
Project 05 Servo Rotation
the plastic arm of the servo will rotate at an angle of 0°, 45°, 90°, 135°, and 180°,
→˓repeatly.
*/
#include <Servo.h>
Servo myservo;// define the name of the servo
void setup()
{
myservo.attach(9);// select the pin of the servo(9)
}
void loop()
{
myservo.write(0);// set the rotation angle of the motor
delay(500);
myservo.write(45);// set the rotation angle of the motor
delay(500);
myservo.write(90);// set the rotation angle of the motor
delay(500);
myservo.write(135);// set the rotation angle of the motor
delay(500);
myservo.write(180);// set the rotation angle of the motor
delay(500);
}

8.3. 3. Projects 77

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board, and power up with a USB cable. Then the arm of the servo will rotate
to 0°, 45°, 90°, 135° and 180°

8.3.6 Project 6: Motor Driving and Speed Control

(1)Description

There are many ways to drive motors. This car uses the most commonly used DRV8833 motor driver chip, which
provides a dual-channel bridge electric driver for toys, printers and other motor integration applications.

In this experiment, we use the DRV8833 motor driver chip on the expansion board to drive the two DC motors, and
demonstrate the effect of forward, backward, left-turning, and right-turning.

78 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(2)Components Required

(3)Knowledge

DRV8833 motor driver chip: Dual H-bridge motor driver with current control function, can drive two DC motors, one
bipolar stepper motor, solenoid valve or other inductive loads. Each H-bridge includes circuitry to regulate or limit
winding current.

An internal shutdown function with a fault output pin is used for over-current and short circuit protection, under-voltage
lockout and over-temperature. A low-power sleep mode is also added. Let’s take a look at the schematic diagram of
the DRV8833 motor driver chip driving two DC motors:

(4)Specification

Input voltage of logic part: DC 5V

Input voltage of driving part : DC 5V

Working current of logic part: <30mA

Operating current of driving part: <2A

Maximum power dissipation: 10W (T=80℃)

Motor speed: 5V 200 rpm / min

8.3. 3. Projects 79

Beetlebot 3 in 1 Robot

Motor drive form: dual H-bridge drive

Control signal input level: high level 2.3V<Vin<5V, low level -0.3V<Vin<1.5V

Working temperature: -25~130℃

(5)Drive the car to move

From the above diagram, the direction pin of the left motor is D4; the speed pin is D6; D2 is the direction pin of the
right motor; and D5 is speed pin.

PWM drives the robot car. The PWM value is in the range of 0-255. The more the PWM value is set, the faster the
rotation of the motor.

Function D4 D6PWM Left motor D2 D5PWM Right motor
forward LOW 200 clockwise LOW 200 clockwise
Go back HIGH 50 anticlockwise HIGH 50 anticlockwise
Turn left HIGH 200 anticlockwise LOW 200 clockwise
Turn right LOW 200 clockwise HIGH 200 anticlockwise
Stop LOW 0 stop LOW 0 stop

(6)Test Code

/*
Project 06 Motor drive and speed regulation
Motor moves forward, backward, left and right
*/
const int left_ctrl = 4;//define the direction control pin(D4) of the left motor
const int left_pwm = 6;// define the speed control pin(D6) of the left motor
const int right_ctrl = 2;//define the direction control pin(D2) of the right motor
const int right_pwm = 5;//define the speed control pin(D5) of the right motor

void setup()
{
pinMode(left_ctrl,OUTPUT);//Set the direction control pin of the left motor to OUTPUT
pinMode(left_pwm,OUTPUT);//Set the PWM control speed of the left motor to OUTPUT
pinMode(right_ctrl,OUTPUT);//Set the direction control pin of the right motor to OUTPUT
pinMode(right_pwm,OUTPUT);//Set the PWM control speed of the right motor to OUTPUT

}

void loop()
{
//front
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200
delay(2000);//delay in 2s

//back
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,50); //Set the PWM control speed of the left motor to 50

(continues on next page)

80 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,50); //Set the PWM control speed of the right motor to 50
delay(2000);//delay in 2s

//left
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200
delay(2000);//delay in 2s

//right
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200
delay(2000);//delay in 2s

//stop
digitalWrite(left_ctrl,LOW);//Set direction control pins of the left motor to LOW
analogWrite(left_pwm,0);//Set the PWM control speed of the left motor to 0
digitalWrite(right_ctrl,LOW);//set control pins of the right motor to LOW
analogWrite(right_pwm,0);//set Set the PWM control speed of the right motor to 0
delay(2000);//delay in 2s

}

(7)Test Result

Upload the test code to the Arduino Nano board, install batteries, turn the power switch to ON end and power up. The
car moves forward for 2s, back for 2s, turn left for 2s, right for 2s and stops for 2s; cyclically

8.3.7 Project 7: Ultrasonic Sensor

There is an ultrasonic sensor on the car. It is a very affordable distance-measuring sensor.

The ultrasonic sensor sends a high-frequency ultrasonic signal that human hearing can’t hear. When encountering
obstacles, these signals will be reflected back immediately. After receiving the returned information, the distance
between the sensor and the obstacle will be calculated by judging the time difference between the transmitted signal
and the received signal. It is mainly used for object avoidance and ranging in various robotics projects.

Project 7.1: Ultrasonic Ranging

(1)Description

In this experiment, we use an ultrasonic sensor to measure distance and print the data on a serial monitor.

8.3. 3. Projects 81

Beetlebot 3 in 1 Robot

(2)Components Required

(3)Knowledge

The HC-SR04 ultrasonic sensor uses sonar to determine distance to an object like what bats do. It offers excellent
non-contact range detection with high accuracy and stable readings in an easy-to-use package. It comes complete with
ultrasonic transmitter and receiver modules.

The HC-SR04 or the ultrasonic sensor is being used in a wide range of electronics projects for creating obstacle detection
and distance measuring application as well as various other applications. Here we have brought the simple method to
measure the distance with Arduino and ultrasonic sensor and how to use ultrasonic sensor with Arduino.

Use method and timing chart of ultrasonic module:

Setting the delay time of Trig pin of SR04 to 10s at least, which can trigger it to detect distance.

After triggering, the module will automatically send eight 40KHz ultrasonic pulses and detect whether there is a signal
return. This step will be completed automatically by the module.

If the signal returns, the Echo pin will output a high level, and the duration of the high level is the time from the
transmission of the ultrasonic wave to the return.

82 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Time=Echo pulse width, unit: us

Distancecm=time/ 58

Distance(inch)=time/ 148

The HC-SR04 ultrasonic sensor has four pins: Vcc, Trig, Echo and GND.

The Vcc pin provides power generating ultrasonic pulses and is connected to Vcc/+5V. The GND pin is grounded/GND.

The Trig pin is where the Arduino sends a signal to start the ultrasonic pulse. The Echo pin is where the ultrasonic
sensor sends information about the duration of the ultrasonic pulse stroke to the Arduino control board.

8.3. 3. Projects 83

Beetlebot 3 in 1 Robot

(4)Wiring Up

Ultrasonic Sensor PCB Board
Vcc 5V
Trig S2D8
Echo S1D7
Gnd G

(5)Test Code

The pin Trig and Echo of the ultrasonic sensor are controlled by the D8 and D7 of the Arduino Nano.

/*
Project 07.1 Ultrasonic Ranging
Ultrasonic detection of distance from objects
*/
const int trig = 8; //Define trig pin to D8
const int echo = 7; //Define echo pin to D7
int duration = 0;
int distance = 0; //Define a variable to receive distance
void setup()
{
pinMode(trig , OUTPUT); // Define the trig pin as the output mode
pinMode(echo , INPUT); // Define the echo pin as the input mode
Serial.begin(9600); // Set baud rate to 9600

}
void loop()
{
digitalWrite(trig , HIGH);//the sensor is triggered by a high pulse of 1000␣

→˓microseconds or more
delayMicroseconds(1000);
digitalWrite(trig , LOW); // Give a short low level in advance to ensure a clean high␣

→˓pulse
duration = pulseIn(echo , HIGH);
distance = (duration/2) / 28.5 ; //Convert to distance
Serial.print(distance); // Print the distance in centimeters
Serial.println("cm");

}

(6)Test Result

Upload the test code to the Arduino Nano board, power up with a USB cable, open the serial monitor and set baud rate
to 9600.

When you move an object in front of the ultrasonic sensor, it will detect the distance and the serial monitor will show
the distance value.

84 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.3. 3. Projects 85

Beetlebot 3 in 1 Robot

Project 7.2: Light Following

(1)Description

In the above experiments, we have learned about the 8*8 dot matrix, motor drivers and speed regulation, ultrasonic
sensors, servos and other hardware. In this experiment, we will combine them to create a follow car with the ultrasonic
sensor. The can can follow an object to move through measuring distance.

(2)Components Required

(3)Working Principle

Detection Detect the front distance Distance unitcm
Condition 1 Distance8
State Go backset PWM to 100
Condition 2 8distance<13
State stop
Condition 3 13distance<35
State Go forwardset PWM to 100
Condition 4 distance35
State stop

86 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(4)Flow Chart

8.3. 3. Projects 87

Beetlebot 3 in 1 Robot

(5)Test Code

/*
Project 07.2: follow me
Car follows the object
*/
const int left_ctrl = 4;//define direction control pins of the left motor as D4
const int left_pwm = 6;//define speed control pins of the left motor as D6
const int right_ctrl = 2;//define the direction control pin of the right motor D2
const int right_pwm = 5;//define the speed control pin of the right motor D5
#include "SR04.h" //define the ultrasonic module function library
#define TRIG_PIN 8// define signals input of the ultrasonic asD8
#define ECHO_PIN 7//define the signal output of the ultrasonic sensor as D7
SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN);
long distance;
const int servopin = 9;//define the pin of the servo asD9
int myangle;
int pulsewidth;

void setup() {
pinMode(left_ctrl,OUTPUT);//Set the direction control pin of the left motor to OUTPUT
pinMode(left_pwm,OUTPUT);//Set the PWM control speed of the left motor to OUTPUT
pinMode(right_ctrl,OUTPUT);//Set the direction control pin of the right motor to OUTPUT
pinMode(right_pwm,OUTPUT);//Set the PWM control speed of the right motor to OUTPUT
pinMode(TRIG_PIN,OUTPUT);//Set TRIG_PIN to OUTPUT
pinMode(ECHO_PIN,INPUT);//Set ECHO_PIN to INPUT
servopulse(servopin,90);//set the initial angle to 90
delay(300);

}

void loop() {
distance = sr04.Distance();//the distance detected by the ultrasonic sensor
if(distance<8)//if the distance is less than 8
{
back();//go back

}
else if((distance>=8)&&(distance<13))//if 8distance<13
{
Stop();//stop

}
else if((distance>=13)&&(distance<35))//if 13distance<35
{
front();//follow

}
else//if above conditions are not met
{
Stop();//stop

}
}

void servopulse(int servopin,int myangle)//angles the servo rotate
{
for(int i=0; i<20; i++)

(continues on next page)

88 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

{
pulsewidth = (myangle*11)+500;
digitalWrite(servopin,HIGH);
delayMicroseconds(pulsewidth);
digitalWrite(servopin,LOW);
delay(20-pulsewidth/1000);

}
}

void front()//define the state of going forward
{
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void back()//define the state of going back
{
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,50); //Set the PWM control speed of the left motor to 50
digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,50); //Set the PWM control speed of the right motor to 50

}
void Stop()//define the state of stop
{
digitalWrite(left_ctrl,LOW);//Set direction control pins of the left motor to LOW
analogWrite(left_pwm,0);//set the PWM control speed of the left motor to 0
digitalWrite(right_ctrl,LOW);//set control pins of the right motor to LOW
analogWrite(right_pwm,0);//set the PWM control speed of the right motor to 0

}

(6)Test Result

Upload the code to the Arduino Nano board, install batteries and turn the switch to the ON end and power up. Then
the car will follow the obstacle to move.

Project 7.3: Dodge obstacles

(1)Description

In this project, we will take advantage of the ultrasonic sensor to detect the distance away from the obstacle so as to
avoid them.

8.3. 3. Projects 89

Beetlebot 3 in 1 Robot

(2)Components Required

(3)Working Principle

90 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.3. 3. Projects 91

Beetlebot 3 in 1 Robot

(4)Flow Chart

92 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(5)Test Code

/*
Project 07.3: avoid obstacles
*/
#include <ks_Matrix.h>
Matrix myMatrix(A4,A5);// define pins of the dot matrix display as A4 and A5
//Array, used to store pattern data, which can be calculated by yourself or obtained␣
→˓from the touch tool
uint8_t matrix_front[8]={0x18,0x24,0x42,0x99,0x24,0x42,0x81,0x00};
uint8_t matrix_back[8]={0x00,0x81,0x42,0x24,0x99,0x42,0x24,0x18};
uint8_t matrix_left[8]={0x12,0x24,0x48,0x90,0x90,0x48,0x24,0x12};
uint8_t matrix_right[8]={0x48,0x24,0x12,0x09,0x09,0x12,0x24,0x48};
uint8_t matrix_stop[8]={0x18,0x18,0x18,0x18,0x18,0x00,0x18,0x18};
uint8_t LEDArray[8];
const int left_ctrl = 4;//define the direction control pin of the left motor to D4
const int left_pwm = 6;//define the speed control pin of the left motor D6
const int right_ctrl = 2;//define the direction control pin of the right motor D2
const int right_pwm = 5;//define the speed control pin of the right motor D5
#include "SR04.h"//define the ultrasonic module function library
#define TRIG_PIN 8// define signals input of the ultrasonic as D8
#define ECHO_PIN 7//define the signal pin of the ultrasonic sensor as D7
SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN);
long distance,a1,a2;//define three distance variables
const int servopin = 9;//define the pin of the servo as D9
int myangle;
int pulsewidth;
int val;

void setup() {
pinMode(left_ctrl,OUTPUT);//Set the direction control pin of the left motor to OUTPUT
pinMode(left_pwm,OUTPUT);//Set the PWM control speed of the left motor to OUTPUT
pinMode(right_ctrl,OUTPUT);//Set the direction control pin of the right motor to OUTPUT
pinMode(right_pwm,OUTPUT);//Set the PWM control speed of the right motor to OUTPUT
pinMode(TRIG_PIN,OUTPUT);//Set TRIG_PIN to OUTPUT
pinMode(ECHO_PIN,INPUT);//Set ECHO_PIN to INPUT
servopulse(servopin,90);//set the initial angle of the servo to 90
delay(300);
myMatrix.begin(112);
myMatrix.clear();

}

void loop()
{
avoid();//run the code of obstacle avoidance

}

void avoid()
{
distance=sr04.Distance(); //obtain the value detected by the ultrasonic sensor
if((distance < 10)&&(distance != 0))// if 0<distance <10
{
car_Stop();//stop

(continues on next page)

8.3. 3. Projects 93

Beetlebot 3 in 1 Robot

(continued from previous page)

myMatrix.clear();
myMatrix.writeDisplay();// show stop pattern
matrix_display(matrix_stop); //show the pattern to stop
delay(100);
servopulse(servopin,180);//servo rotates to 180°
delay(200);
a1=sr04.Distance();//measure distance
delay(100);
servopulse(servopin,0);//rotate to 0°
delay(200);
a2=sr04.Distance();//measure distance
delay(100);
if(a1 > a2)//compare distance, the left one is longer than the right
{
car_left();//turn left
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_left); //show the pattern to turn left
servopulse(servopin,90);//rotate to 90°
//delay(50);
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_front); //show the pattern to go front

}
else//if the right distance is longer than the left distance
{
car_right();//turn right
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_right); //show the patter to turn right
servopulse(servopin,90);//the servo rotate to 90°
//delay(50);
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_front); //show the pattern to go front

}
}
else//if above conditions are not met
{
car_front();//go front
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_front); //show the pattern to go front

}
}

void servopulse(int servopin,int myangle)//
{
for(int i=0; i<20; i++)
{
pulsewidth = (myangle*11)+500;
digitalWrite(servopin,HIGH);

(continues on next page)

94 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

delayMicroseconds(pulsewidth);
digitalWrite(servopin,LOW);
delay(20-pulsewidth/1000);

}
}

void car_front()//define the state of going front
{
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void car_back()//define the state of going back
{
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,50); //Set the PWM control speed of the left motor to 50
digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,50); //Set the PWM control speed of the right motor to 50

}
void car_left()//define the state of turning left
{
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //Set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void car_right()//define the state of turning left
{
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void car_Stop()//define the state of stopping
{
digitalWrite(left_ctrl,LOW);//Set direction control pins of the left motor to LOW
analogWrite(left_pwm,0);//Set the PWM control speed of the left motor to 0
digitalWrite(right_ctrl,LOW);//set control pins of the right motor to LOW
analogWrite(right_pwm,0);//Set the PWM control speed of the right motor to 0

}

//show functions of patterns
void matrix_display(unsigned char matrix_value[])
{
for(int i=0; i<8; i++)
{
LEDArray[i]=matrix_value[i];
for(int j=7; j>=0; j--)
{
if((LEDArray[i]&0x01)>0)
myMatrix.drawPixel(j, i,1);

(continues on next page)

8.3. 3. Projects 95

Beetlebot 3 in 1 Robot

(continued from previous page)

LEDArray[i] = LEDArray[i]>>1;
}

}
myMatrix.writeDisplay();

}

(6)Test Result

Upload the test code to the Arduino Nano board, put batteries in the battery holder, turn the power switch to the ON
end and power up. Then the car can automatically dodge obstacles.

96 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.3.8 Project 8: Line Tracking Sensor

There are two IR line tracking sensors on the car. They are actually two pairs of ST188L3 infrared tubes and used to
detect black and white lines. In this project, we will make a line tracking car.

Project 8.1: Reading Values

(1)Description

In this experiment, we use ST188L3 infrared tubes to detect black and white lines, then print the data on the serial
monitor.

(2)Components Required

(3)Knowledge

Infrared line tracking:

The IR line tracking sensor boasts a pair of ST188L3 infrared tubes. ST188L3 tubes has an infrared emitting diode
and a receiver tube. When the emitting diode emits an infrared signal then received by the receiving tube after being
reflected by the white object. Once the receiving tube receives the signal, the output terminal will output a low level
(0); when the infrared emitting diode emits an infrared signal, and the infrared signal is absorbed by the black object,
a high level (1) will be output, thus realizing the function of detecting signals through infrared rays.

Warning: Reflective optical sensors (including IR line tracking sensors) shouldn’t be applied under sunlight as there
is a lot of invisible light such as infrared and ultraviolet.

Values detected by the line tracking sensor are shown in the table.

The value will be 1 if detecting black or no objects and the value 0 will appear if detecting white objects.

he detected black object or no object represents 1, and the detected white object represents 0.

Left Right ValueBinary
0 0 00
0 1 01
1 0 10
1 1 11

8.3. 3. Projects 97

Beetlebot 3 in 1 Robot

(4)Test Code

The line tracking sensors of the PCB board are controlled by D11 and D10 of the Arduino Nano baord.

/*
Project 08.1: Tracking sensor read value
*/
int tracking_left = 11; //define the pin of the left sensor as D11
int tracking_right = 10; //define the pin of the right sensor as D10
int L_val,R_val; //define two variables of two sensors

void setup() {
Serial.begin(9600); //set baud rate to 9600
pinMode(tracking_left, INPUT); //set pins of the left sensor to OUTPUT
pinMode(tracking_right, INPUT); //set pins of the right sensor to INPUT
}

void loop() {
L_val = digitalRead(tracking_left); //read the value of the left sensor
R_val = digitalRead(tracking_right); //read the value of the right sensor
Serial.print("L_val: "); //serial print L_val
Serial.print(L_val); //serial prints L_val
Serial.print(" "); //serial prints space key
Serial.print("R_val: "); //serial prints R_val
Serial.println(R_val); //serial prints the R_val
delay(300); //delay in 0.3s
}

(5)Test Result

Upload the test code to the Arduino Nano board, power up with a USB cable, open the serial monitor and set baud rate
to 9600.

Put a black thing under the line tracking sensor of the car and move it, you will see different indicators light up, and at
the same time you will see the value on the serial monitor.

The sensitivity can be adjusted by rotating the potentiometer. When the indicator light is adjusted to the critical point
of on and off state, the sensitivity is the highest.

98 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Project 8.2: Line Tracking

(1)Description

We’ve introduced the knowledge of motor drivers, speed regulation, and infrared line tracking. In this experiment, the
car will perform different actions according to the values transmitted by the infrared tracking.

(2)Components Required

8.3. 3. Projects 99

Beetlebot 3 in 1 Robot

(3)Working Principle

Left Right ValueBinary State
0 0 00 Stop
0 1 01 Turn right
1 0 10 Turn left
1 1 11 Move forward

(4)Flow Chart

100 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(5)Test Code

/*
Project 08.2: Follow line to walk
*/
const int left_ctrl = 4;//define direction control pins of the left motor as D4
const int left_pwm = 6;//define speed control pins of the left motor as D5
const int right_ctrl = 2;//define the direction control pin of the right motor D2
const int right_pwm = 5;//define the speed control pin of the right motor D5
int tracking_left = 11;//define the pin of the left sensor as D11
int tracking_right = 10;//define the pin of the right sensor as D10
int L_val,R_val;//define two variables of two line tracking sensors
const int servopin = 9;//define the pin of the servo asD9
int myangle;
int pulsewidth;

void setup() {
pinMode(left_ctrl,OUTPUT);//Set the direction control pin of the left motor to OUTPUT
pinMode(left_pwm,OUTPUT);//Set the PWM control speed of the left motor to OUTPUT
pinMode(right_ctrl,OUTPUT);//Set the direction control pin of the right motor to OUTPUT
pinMode(right_pwm,OUTPUT);//Set the PWM control speed of the right motor to OUTPUT
pinMode(tracking_left, INPUT); //set the pin of the left sensor to INPUT
pinMode(tracking_right, INPUT); //set the pin of the right sensor to INPUT
servopulse(servopin,90);//set the initial angle of the servo to 90
delay(300);

}

void loop()
{
tracking(); //run the main program

}

void tracking()
{
L_val = digitalRead(tracking_left);//Read the value of the left sensor
R_val = digitalRead(tracking_right);//Read the value of the right sensor
if((L_val == 1)&&(R_val == 1))//if sensors detect black lines
{
front();//go forward

}
else if((L_val == 1)&&(R_val == 0))//if only the left sensor detects black lines
{
left();//turn left

}
else if((L_val == 0)&&(R_val == 1))//if only the right one detects the black line
{
right();//turn right

}
else//if none of sensors detects black lines
{
Stop();//stop

}
}

(continues on next page)

8.3. 3. Projects 101

Beetlebot 3 in 1 Robot

(continued from previous page)

void servopulse(int servopin,int myangle)//angles the servo run
{
for(int i=0; i<20; i++)
{
pulsewidth = (myangle*11)+500;
digitalWrite(servopin,HIGH);
delayMicroseconds(pulsewidth);
digitalWrite(servopin,LOW);
delay(20-pulsewidth/1000);

}
}

void front()//define the state of going front
{
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void left()//define the state of turning left
{
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void right()//define the state of turning left
{
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void Stop()//define the state of stopping
{
digitalWrite(left_ctrl,LOW);//Set direction control pins of the left motor to LOW
analogWrite(left_pwm,0);//Set the PWM control speed of the left motor to 0
digitalWrite(right_ctrl,LOW);//set control pins of the right motor to LOW
analogWrite(right_pwm,0);//Set the PWM control speed of the right motor to 0

}

102 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board, turn the power switch to the ON end, power up and put the car on a
map we provide. Then it will perform different functions via values sent by line tracking sensors.

8.3.9 Project 9: Light Following

There are two photoresistors on the car. They can vary with the light intensity and send information to the Nano board
to control the car.

Photoresistors can determine and conduct the car to move by detecting light.

Project 9.1 Read Values

(1)Description

In this experiment, we will learn the working principle of the photoresistor.

(2)Components Required

(3)Knowledge

Photoresistor:

It mainly uses a photosensitive resistance element whose resistance varies from the light intensity. The signal terminal
of the sensor is connected to the analog port of the microcontroller. When the light is stronger, the analog value at the
analog port will increase; on the contrary, when the light intensity is weaker, the analog value of the microcontroller
will reduce. In this way, the corresponding analog value can reflect the ambient light intensity.

8.3. 3. Projects 103

Beetlebot 3 in 1 Robot

(4)Wire up

Through the wiring-up diagram, signal pins of two photoresistors are connected to A6 and A7 of the Nano board.

For the following experiment, we use the photoresistor connected to A6 to finish experiments. First, let’s read analog
values.

Left photoresistor PCB board
G G
V V
S SA6

(5)Test Code

The left photoresistor is controlled by the A6 of the Arduino Nano board.

/*
Project 09.1:Read Photosensor Value
*/
int sensorPin = A6; // select the input pin for the photocell
int sensorValue = 0; // variable to store the value coming from the sensor
void setup() {
Serial.begin(9600);
}
void loop() {
sensorValue = analogRead(sensorPin); // read the value from the sensor:
Serial.println(sensorValue); //Serial port prints the value of photoresistor
delay(500);
}

104 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board, power up with a USB cable, open the serial monitor and set baud to
9600.

When the light intensifies, the analog value will get increased; on the contrary, the analog value will get reduced.

Project 9.2: Light Following Car

(1)Description

We have learned the working principle of photoresistor, motor and speed regulation. In this experiment, we will use a
photoresistor to detect the intensity of light as as to achieve the light following effect.

(2)Components Required

8.3. 3. Projects 105

Beetlebot 3 in 1 Robot

(3)Working Principle

Analog value of the left sensor Analog value of the right sensor Function
>500 >500 Move forward
>500 500 Move to left
500 >500 Move to right
<500 <500 Stop

(4)Wiring up

Left Photoresistor PCB Board Right photoresistor PCB Board

G G G G

V V V V

S SA6 S SA7

106 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(5)Flow Chart

8.3. 3. Projects 107

Beetlebot 3 in 1 Robot

(6)Test Code

Left and right photoresistors are controlled by A6 and A7 of the Arduino Nano board.

/*
Project 09.2:Light Following Car
*/
const int light_L_Pin = A6; //define the pins of the left photoresistor to A6
const int light_R_Pin = A7; //define the pins of the right photoresistor to A7
const int left_ctrl = 4;//define direction control pins of the left motor as D4
const int left_pwm = 6;//define speed control pins of the left motor as D6
const int right_ctrl = 2;//define the direction control pin of the right motor D2
const int right_pwm = 5;//define the speed control pin of the right motor D5
int left_light;
int right_light;
const int servopin = 9;//define the pin of the servo asD9
int myangle;
int pulsewidth;

void setup(){
Serial.begin(9600);
pinMode(light_L_Pin, INPUT); //Set pins of the left photoresistor to INPUT
pinMode(light_R_Pin, INPUT); //Set pins of the right photoresistor to INPUT
pinMode(left_ctrl,OUTPUT);//Set the direction control pin of the left motor to OUTPUT
pinMode(left_pwm,OUTPUT);//Set the PWM control speed of the left motor to OUTPUT
pinMode(right_ctrl,OUTPUT);//Set the direction control pin of the right motor to OUTPUT
pinMode(right_pwm,OUTPUT);//Set the PWM control speed of the right motor to OUTPUT
servopulse(servopin,90);//set the initial angle of the servo to 90
delay(300);

}

void loop(){
left_light = analogRead(light_L_Pin);//read the value of the left photoresistor
right_light = analogRead(light_R_Pin);//read the value of the right photoresistor
Serial.print("left_light_value = ");
Serial.println(left_light);
Serial.print("right_light_value = ");
Serial.println(right_light);
if (left_light > 500 && right_light > 500) //range photoresistors can detect
{
Car_front(); //go forward

}
else if (left_light >500 && right_light <= 500) //range photoresistors can detect
{
Car_left(); //turn left

}
else if (left_light <= 500 && right_light > 500) //range photoresistors can detect
{
Car_right(); //turn right

}
else //if above conditions are not met
{
Car_Stop(); //stop

(continues on next page)

108 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

}
}

void servopulse(int servopin,int myangle)//angles the servo run
{
for(int i=0; i<20; i++)
{
pulsewidth = (myangle*11)+500;
digitalWrite(servopin,HIGH);
delayMicroseconds(pulsewidth);
digitalWrite(servopin,LOW);
delay(20-pulsewidth/1000);

}
}

void Car_front()
{
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void Car_left()
{
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200;

}
void Car_right()
{
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void Car_Stop()
{
digitalWrite(left_ctrl,LOW);//Set direction control pins of the left motor to LOW
analogWrite(left_pwm,0);//Set the PWM control speed of the left motor to 0
digitalWrite(right_ctrl,LOW);//set control pins of the right motor to LOW
analogWrite(right_pwm,0);//Set the PWM control speed of the right motor to 0

}

8.3. 3. Projects 109

Beetlebot 3 in 1 Robot

(7)Test Result

Upload the test code to the Arduino Nano board, put batteries in the battery holder, turn the power switch to the ON
end and power up. Then the car will follow the light to move.

8.3.10 Project 10: IR Remote Control

Infrared remote controls are everywhere in daily life. It is used to control various home appliances, such as TV, speakers,
video recorders and satellite signal receivers.

The remote control is composed of an IR emitter, an IR receiver and a decoding MCU. In this project, we will make a
IR remote control car.

Project 10.1: IR Remote and Reception

(1)Description

In this experiment, we will combine the IR receiver and the IR remote control to read key values and show them on the
serial monitor.

110 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(2)Components Required

(3)Knowledge

IR Remote Control

It is a device with buttons. When the key is pressed, IR signals will be sent.

Infrared remote control technology is widely used, such as TVs, air conditioners and so on. And it can control air
conditioners and TVs

The infrared remote control adopts NEC coding, and the signal period is 110ms.

The remote control is shown below:

8.3. 3. Projects 111

Beetlebot 3 in 1 Robot

Infrared (IR) receiver:

It can receive infrared light and be used to detect the infrared signal emitted by the infrared remote control.

It can demodulate the received infrared light signal and convert it back to binary, and then transmit the information to
the microcontroller.

112 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

NEC Infrared communication protocol

NEC Protocol

To my knowledge the protocol I describe here was developed by NEC (Now Renesas). I’ve seen very similar protocol
descriptions on the internet, and there the protocol is called Japanese Format.

I do admit that I don’t know exactly who developed it. What I do know is that it was used in my late VCR produced by
Sanyo and was marketed under the name of Fisher. NEC manufactured the remote control IC.

This description was taken from my VCR’s service manual. Those were the days, when service manuals were filled
with useful information!

Features

8 bit address and 8 bit command length.

Extended mode available, doubling the address size.

Address and command are transmitted twice for reliability.

Pulse distance modulation.

Carrier frequency of 38kHz.

Bit time of 1.125ms or 2.25ms.

Modulation

The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about
21 cycles). A logical “1” takes 2.25ms to transmit, while a logical “0” is only half of that, being 1.125ms. The
recommended carrier duty-cycle is 1/4 or 1/3.

Protocol

8.3. 3. Projects 113

Beetlebot 3 in 1 Robot

The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In
this case Address $59 and Command $16 is transmitted. A message is started by a 9ms AGC burst, which was used to
set the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the
Address and Command. Address and Command are transmitted twice. The second time all bits are inverted and can
be used for verification of the received message. The total transmission time is constant because every bit is repeated
with its inverted length. If you’re not interested in this reliability you can ignore the inverted values, or you can expand
the Address and Command to 16 bits each!

Keep in mind that one extra 560µs burst has to follow at the end of the message in order to be able to determine the
value of the last bit.

A command is transmitted only once, even when the key on the remote control remains pressed. Every 110ms a repeat
code is transmitted for as long as the key remains down. This repeat code is simply a 9ms AGC pulse followed by a
2.25ms space and a 560µs burst.

Extended NEC protocol

The NEC protocol is so widely used that soon all possible addresses were used up. By sacrificing the address redun-
dancy the address range was extended from 256 possible values to approximately 65000 different values. This way the
address range was extended from 8 bits to 16 bits without changing any other property of the protocol.

By extending the address range this way the total message time is no longer constant. It now depends on the total
number of 1’s and 0’s in the message. If you want to keep the total message time constant you’ll have to make sure
the number 1’s in the address field is 8 (it automatically means that the number of 0’s is also 8). This will reduce the
maximum number of different addresses to just about 13000.

The command redundancy is still preserved. Therefore each address can still handle 256 different commands.

114 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Keep in mind that 256 address values of the extended protocol are invalid because they are in fact normal NEC protocol
addresses. Whenever the low byte is the exact inverse of the high byte it is not a valid extended address.

(4)Test Code

The IR receiver on the PCB board is controlled by IO port(D12) of the Arduino Nano board.

/*
Project 10.1:Infrared remote and receiver
*/
#include <IRremote.h>
int RECV_PIN = 12;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // start receiving signals

}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
irrecv.resume(); // receive the next value

}
delay(100);

}

(5)Test Result:

Upload the test code to the Arduino Nano board, power up with a USB cable, open the serial monitor and set to

9600.

Press a key on the IR remote control, you will view a code on the serial monitor. If FFFFFFFF shows up, just ignore it.

8.3. 3. Projects 115

Beetlebot 3 in 1 Robot

Code of each key.

116 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Project 10.2: IR Remote Control Car

(1)Description

In the above experiment, we have learned about the knowledge of the 8*8 dot matrix display, the motor driver and speed
regulation, the infrared receiver and the infrared remote control. In this experiment, we will use the infrared remote
control and the infrared receiver to control the car.

(2)Components Required

(3)Working Principle

Keys Keys Code Functions

FF629D Go forward
Display “forward”pattern

FFA857 Go back
Display “back”pattern

FF22DD Turn left
Show“left” pattern

FFC23D Turn right
Show“right turning”pattern

FF02FD stop
show“stop”pattern

8.3. 3. Projects 117

Beetlebot 3 in 1 Robot

118 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(4)Flow Chart

8.3. 3. Projects 119

Beetlebot 3 in 1 Robot

(5)Test Code

/*
Project 10.2:Infrared remote control car
*/
#include <ks_Matrix.h>
Matrix myMatrix(A4,A5);//define pins of the dot matrix display as A4, and A5
//Array, used to store pattern data, which can be calculated by yourself or obtained␣
→˓from the touch tool
uint8_t matrix_front[8]={0x18,0x24,0x42,0x99,0x24,0x42,0x81,0x00};
uint8_t matrix_back[8]={0x00,0x81,0x42,0x24,0x99,0x42,0x24,0x18};
uint8_t matrix_left[8]={0x12,0x24,0x48,0x90,0x90,0x48,0x24,0x12};
uint8_t matrix_right[8]={0x48,0x24,0x12,0x09,0x09,0x12,0x24,0x48};
uint8_t matrix_stop[8]={0x18,0x18,0x18,0x18,0x18,0x00,0x18,0x18};
uint8_t LEDArray[8];
const int left_ctrl = 4;//define the control pin of the left motor as D4
const int left_pwm = 6;//define the control pin of the left motor as D6
const int right_ctrl = 2;//define the control pin of the right motor as D2
const int right_pwm = 5;//define the control pin of the right motor as D5
#include <IRremote.h>//IR remote function library
int RECV_PIN = 12;//define the pin of the IR reception as D12
IRrecv irrecv(RECV_PIN);
long irr_val;
decode_results results;
const int servopin = 9;//define the pin of the servo as D9
int myangle;
int pulsewidth;

void setup()
{
Serial.begin(9600);//open serial port and set baud rate 9600
pinMode(left_ctrl,OUTPUT);//set the direction control pin of the left motor to OUTPUT
pinMode(left_pwm,OUTPUT);//set the pwm control pin of the left motor to OUTPUT
pinMode(right_ctrl,OUTPUT);//set the control pin of the right motor to OUTPUT
pinMode(right_pwm,OUTPUT);//set the pwm control pin of the right motor to OUTPUT
pinMode(RECV_PIN,INPUT);//set the pin of the IR receiver to INPUT
// In case the interrupt driver crashes on setup, give a clue
// to the user what's going on.
Serial.println("Enabling IRin");
irrecv.enableIRIn(); // start receiving signals
Serial.println("Enabled IRin");
myMatrix.begin(112);
myMatrix.clear();
myMatrix.writeDisplay();
servopulse(servopin,90);//set the initial angle of the servo to 90
delay(300);

}

void loop()
{
if (irrecv.decode(&results))

{
irr_val = results.value;

(continues on next page)

120 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

Serial.println(irr_val, HEX);//the serial prints the IR remote signals
switch(irr_val)
{
case 0xFF629D :
car_front();
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_front);
break;
case 0xFFA857 :
car_back();
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_back);
break;
case 0xFF22DD :
car_left();
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_left);
break;
case 0xFFC23D :
car_right();
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_right);
break;
case 0xFF02FD :
car_Stop();
myMatrix.clear();
myMatrix.writeDisplay();
matrix_display(matrix_stop);
break;

}
irrecv.resume(); // receive the next value

}
}

void servopulse(int servopin,int myangle)//the servo runs angles
{
for(int i=0; i<20; i++)
{
pulsewidth = (myangle*11)+500;
digitalWrite(servopin,HIGH);
delayMicroseconds(pulsewidth);
digitalWrite(servopin,LOW);
delay(20-pulsewidth/1000);

}
}

void car_front()//define the state of going front
{

(continues on next page)

8.3. 3. Projects 121

Beetlebot 3 in 1 Robot

(continued from previous page)

digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void car_back()//define the state of going back
{
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,50); //Set the PWM control speed of the left motor to 50
digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,50); //Set the PWM control speed of the right motor to 50

}
void car_left()//define the state of turning left
{
digitalWrite(left_ctrl,HIGH); //set control pins of the left motor to HIGH
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,LOW); //set control pins of the right motor to LOW
analogWrite(right_pwm,200); //Set the PWM control speed of the right motor to 200

}
void car_right()//define the state of turning right
{
digitalWrite(left_ctrl,LOW); //Set direction control pins of the left motor to LOW
analogWrite(left_pwm,200); //Set the PWM control speed of the left motor to 200
digitalWrite(right_ctrl,HIGH); //Set direction control pins of the right motor to HIGH
analogWrite(right_pwm,200); //set the PWM control speed of the right motor to 200

}
void car_Stop()//define the state of stop
{
digitalWrite(left_ctrl,LOW);//Set direction control pins of the left motor to LOW
analogWrite(left_pwm,0);//Set the PWM control speed of the left motor to 0
digitalWrite(right_ctrl,LOW);//set control pins of the right motor to LOW
analogWrite(right_pwm,0);//Set the PWM control speed of the right motor to 0

}

//
void matrix_display(unsigned char matrix_value[])
{
for(int i=0; i<8; i++)
{
LEDArray[i]=matrix_value[i];
for(int j=7; j>=0; j--)
{
if((LEDArray[i]&0x01)>0)
myMatrix.drawPixel(j, i,1);
LEDArray[i] = LEDArray[i]>>1;

}
}
myMatrix.writeDisplay();

}

122 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano motherboard, install batteries, turn the power switch to the ON end, power
up and press a key of the IR remote control. Then the car will make the corresponding movement.

8.3.11 Project 11: WIFI Control

In this lesson, we control the car through app. The Beetlebot APP sends commanders to the WIFI ESP-01 module then
transfers to it to the microcontroller. By doing this, the car can perform different functions.

Project 11.1: WIFI Test

(1)Description

The ESP8266 serial WiFi ESP-01 module is an ultra-low-power UART-WiFi transparent transmission module and
designed for mobile devices and IoT applications.

It can achieve networking functions by connecting devices to Wifi internet.

8.3. 3. Projects 123

Beetlebot 3 in 1 Robot

(2)Components Required:

(3)Knowledge

USB to ESP-01S WiFi module serial shield:

It is suitable for the ESP-01S WiFi module. Turn the DIP switch on the USB to ESP-01S WiFi module serial Expansion
Boardto Flash Boot, and plug into computer’s USB port. You can use serial debugging tool to test the AT command.

Turn the DIP switch on the USB to ESP-01S WiFi module serial expansion board to the UartDownload, ESP-01 module
is at download mode. You can download the firmware to ESP-01 module using AT firmware.

ESP8266 serial WiFi ESP-01:

ESP8266 serial WiFi ESP-01 is an ultra-low-power UART-WiFi transparent transmission module. It can be widely
used in smart grids, intelligent transportation, smart furniture, handheld devices, industrial control and other fields.

Features:

124 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Support wireless 802.11 b/g/n standards

Support STA/AP/STA+AP three modes of operation

Built-in TCP/IP protocol stack to support multi-channel TCP Client connections

Supports many Socket AT commands

Supports UART / GPIO data communication interface

Supports Smart Link smart networking function

Supports remote firmware upgrades(OTA)

Built-in 32-bit MCU, can also be used as an application processor

Ultra-low-power and highly integrated Wi-Fi chip for battery-powered applications

Working temperature range: -40 ° C to + 125 ° C

3.3V single power supply

(4)Functions

A. Main functions

The main functions that can be achieved by ESP8266 include: serial port transparent transmission , PWM regulation,
GPIO control.

※Serial port transparent transmission: The transmission is reliable with a maximum transmission rate of 460800bps.

※PWM regulation: Adjusting lights and tricolor LED, motor speed control, etc.

※GPIO control: Control switch, relay, etc.

B.Working modes

The ESP8266 module supports three operating modes, STA/AP/STA+AP.

STA mode: The ESP8266 module can access to the Internet through a router, so the mobile phone or computer can
remotely control the device through the Internet.

8.3. 3. Projects 125

Beetlebot 3 in 1 Robot

AP mode: ESP8266 module, as a hotspot, allows the direct communication with the module and cellphones/computers,
achieving wireless control of the local area network (LAN).

STA+AP mode: two modes coexist, that is, the Internet can achieve free switch.

Applications

Serial CH340 to Wi-Fi

Industrial transparent transmission DTU

Wi-Fi remote monitoring/control

Toy industry

Color LED control

Integrated management of fire protection and security intelligence

Smart card terminals, wireless POS machines, Wi-Fi cameras, handheld devices, etc

126 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(5)Insert the Wifi serial port expansion board into the USB port of your PC:

Insert the ESP8266 serial WIFI ESP-01 module into the USB to ESP-01S WIFI expansion board.

Turn the DIP switch of the USB to ESP-01S WIF expansion board to UartDownload end and plug it to the USB port
of your computer

8.3. 3. Projects 127

Beetlebot 3 in 1 Robot

(6)Set up the Esp8266 development environment:

Insert the ESP8266 serial WiFi ESP-01 module into the USB to ESP-01S WiFi expansion board correctly, and then
plug the it into the USB port of the computer. Click to enter the arduino 2.1.1 folder (you can also use the latest version)
to enter the IDE interface.

Download and install from the Arduino IDE

Click File→Preferences, copy and paste this address (http://arduino.esp8266.com/stable/package_esp8266com_index.
json) in the“Additional Boards Manager URLs:”, then click “OK” to save this address.

128 Chapter 8. Arduino tutorial

http://arduino.esp8266.com/stable/package_esp8266com_index.json
http://arduino.esp8266.com/stable/package_esp8266com_index.json

Beetlebot 3 in 1 Robot

Click“Tools”→“Board:”, then click on “Board Manager. . . ” to enter the “Board Manager” page, type “ESP8266”.
Then select the latest version to install.

8.3. 3. Projects 129

Beetlebot 3 in 1 Robot

130 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Click “Install” to start to install the relevant plug-ins. (If downloading unsuccessfully, just click “Install” again.)

8.3. 3. Projects 131

Beetlebot 3 in 1 Robot

However, due to network reasons, most users may not be able to search esp8266 by esp8266 Community, so, we
recommend you to install ESP8266 by tools.

Close the page, and then click“Tools”→“Board:”, you can view different models of ESP8266 development boards.
Select the corresponding ESP8266 development board model and COM port to program ESP8266.

132 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Install ESP8266 by tools (Recommended)

Click File < Preferences, copy the link http://arduino.esp8266.com/stable/package_esp8266com_index.json to “Addi-

8.3. 3. Projects 133

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Beetlebot 3 in 1 Robot

tional Boards Manager URLs:”box.

Use“ESP8266 one-click installation of Arduino board version 2.5.0.exe”to install ESP8266. This method is recom-
mended.

Double-click“ESP8266 one-click installation of Arduino board version 2.5.0.exe”,then the installation is finished.

After the above tool is installed, restart the Arduino IDE software and click on the Arduino menu bar“Tools”→“Board”
, you can view different models of ESP8266 development boards in it. Select the corresponding ESP8266 development
board model and COM port to program ESP8266.

134 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.3. 3. Projects 135

Beetlebot 3 in 1 Robot

(6)Test Code

Note: After opening the IDE, set the board type and COM port first. If you don’t have WiFi at home, you can turn your
phone hotspot on to enable shared WiFi.

The UTXD pin of the WIFI ESP-01 module is controlled by the IO port RX (0) of the Arduino Nano motherboard, and
the URXD pin is controlled by the IO port TX(1) of the Arduino Nano board.

Note: you need to change the account and password of Wifi in the code into yours.

/*
Project 10.1 WIFI test
*/
#include <ESP8266WiFi.h>
#include <ESP8266mDNS.h>
#include <WiFiClient.h>

#ifndef STASSID
//#define STASSID "your-ssid"
//#define STAPSK "your-password"
#define STASSID "ChinaNet-2.4G-0DF0" //the name of user's wifi
#define STAPSK "ChinaNet@233" //the password of user's wifi
#endif

const char* ssid = STASSID;
const char* password = STAPSK;

// TCP server at port 80 will response the HTTP requirement
WiFiServer server(80);

void setup(void) {
Serial.begin(115200);

// connect WiFi
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
Serial.println("");

// wait connection
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

(continues on next page)

136 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

// set the mDNS responder::
// - in this example. the first parameter is domain name
// The fully qualified domain name is “esp8266.local”
// - the second parameter is IP address
// send the IP address via WiFi
if (!MDNS.begin("esp8266")) {
Serial.println("Error setting up MDNS responder!");
while (1) {

delay(1000);
}

}
Serial.println("mDNS responder started");

// activate TCP (HTTP) server
server.begin();
Serial.println("TCP server started");

// add the server to MDNS-SD
MDNS.addService("http", "tcp", 80);

}

void loop(void) {

MDNS.update();

// check the client side is connected or not
WiFiClient client = server.available();
if (!client) {
return;

}
Serial.println("");
Serial.println("New client");

// wait the effective data from the client side
while (client.connected() && !client.available()) {

delay(1);
}

// read the first row of HTTP requirement
String req = client.readStringUntil('\r');

// the first row of the HTTP requirement is shown below: "GET /path HTTP/1.1"
// Retrieve the "/path" part by finding the spaces
int addr_start = req.indexOf(' ');
int addr_end = req.indexOf(' ', addr_start + 1);
if (addr_start == -1 || addr_end == -1) {
Serial.print("Invalid request: ");
Serial.println(req);
return;

}
req = req.substring(addr_start + 1, addr_end);
Serial.print("Request: ");

(continues on next page)

8.3. 3. Projects 137

Beetlebot 3 in 1 Robot

(continued from previous page)

Serial.println(req);
client.flush();

String s;
if (req == "/") {
IPAddress ip = WiFi.localIP();
String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + String(ip[2]) + '.' +␣

→˓String(ip[3]);
s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>

→˓Hello from ESP8266 at ";
s += ipStr;
s += "</html>\r\n\r\n";
Serial.println("Sending 200");

} else {
s = "HTTP/1.1 404 Not Found\r\n\r\n";
Serial.println("Sending 404");

}
client.print(s);

Serial.println("Done with client");
}

(7)Test Result

After the account and password of Wifi is changed, turn the DIP switch of the USB to ESP-01S WIFI module to the
Uart Download end and plug ESP-01S WIFI module into the USB port of your PC.

Set board type and COM port.

And upload the ESP8266 code to the ESP8266 serial WIFI ESP-01 module.

If the test code is not uploaded successfully, check the board type and the COM port first, then unplug the ESP-01S
WIFI module and restart it.

138 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

After the ESP8266 code is successfully uploaded, first unplug the USB to ESP-01S WIFI module serial test expansion
board from the computer, then turn its DIP. switch to Flash Boot and interface it with the USB port of your PC again.
Open the serial monitor ans set baud rate to 115200, as shown below:

8.3. 3. Projects 139

Beetlebot 3 in 1 Robot

Project 11.2 : Control 8*8 Dot Matrix Display Via WIFI

(1)Description

In this experiment, we will use the ESP8266 serial WIFI ESP-01 module to control the 8*8 dot matrix display on the
car through APP and WIFI.

(2)Components Required:

140 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(3)Insert the Wifi serial port expansion board into the USB port of your PC:

Insert the ESP8266 serial WIFI ESP-01 module into the USB to ESP-01S WIFI expansion board.

Turn the DIP switch of the USB to ESP-01S WIF expansion board to UartDownload end and plug it to the USB port.

8.3. 3. Projects 141

Beetlebot 3 in 1 Robot

(4)APP:

For Android system

(1). Turn on the location services of the mobile phone and connect the wifi of yourself.

(2). Search Beetlebot in Google Play, or open the following link to download and install the app.

https://play.google.com/store/apps/details?id=com.keyestudio.beetlecar

142 Chapter 8. Arduino tutorial

https://play.google.com/store/apps/details?id=com.keyestudio.beetlecar

Beetlebot 3 in 1 Robot

8.3. 3. Projects 143

Beetlebot 3 in 1 Robot

144 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(3). Click Open button and enter interface of the app.

8.3. 3. Projects 145

Beetlebot 3 in 1 Robot

146 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(4). Input the detected Wifi IP address(for example, the IP address in the serial monitor is 192.168.1.134), and Slide

the button to the right to connect Wifi. At same time, the IP address will be shown at the left box, which
means that Wifi is connected well.

8.3. 3. Projects 147

Beetlebot 3 in 1 Robot

Note: Click buttons on the APP, the blue indicator on the ESP8266 serial WIFI ESP-01 module will flash, indicating
that the APP has been connected to WIFI.

For IOS system

(1). Turn on the location services of the mobile phone and connect the wifi of yourself.

148 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(2). Open App Store

(3). Search Beetlebot in App Storeclick“ ”to download Beetlebot APP.

8.3. 3. Projects 149

Beetlebot 3 in 1 Robot

(4). Click Open button and enter interface of the app.

150 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(5). Input the detected Wifi IP address(for example, the IP address in the serial monitor is 192.168.1.134), and Slide

the button to the right to connect Wifi. At same time, the IP address will be shown at the left box, which
means that Wifi is connected well.

8.3. 3. Projects 151

Beetlebot 3 in 1 Robot

Note: Click buttons on the APP, the blue indicator on the ESP8266 serial WIFI ESP-01 module will flash, indicating
that the APP has been connected to WIFI.

152 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(5)ESP8266 Code

The pin UTXD and URXD of the ESP8266 serial WIFI ESP-01 module are controlled by RX(0) and TX(1) of the
Arduino Nano board.

Note: you need to change the account and password of Wifi in the code into yours.

/*
Project 11.2_1 ESP8266_Code
*/
// generated by KidsBlock
#include <Arduino.h>
#include <ESP8266WiFi.h>
#include <ESP8266mDNS.h>
#include <WiFiClient.h>
//#include <WiFi.h>

#ifndef STASSID
#define STASSID "ChinaNet-2.4G-0DF0"
#define STAPSK "ChinaNet@233"
#endif
const char* ssid = STASSID;
const char* password = STAPSK;

//IPAddress local_IP(192,168,4,22);
//IPAddress gateway(192,168,4,22);
//IPAddress subnet(255,255,255,0);
//
//const char *ssid = "ESP8266_AP_TEST";
//const char *password = "12345678";

WiFiServer server(80);
String unoData = "";
int ip_flag = 0;
int ultra_state = 1;
String ip_str;

void setup() {
Serial.begin(9600);

// WiFi.mode(WIFI_AP); //set the APmode
//
// WiFi.softAPConfig(local_IP, gateway, subnet); //set the AP address
// while(!WiFi.softAP(ssid, password)){}; //enable AP
// Serial.println("AP start successfully");
//
// Serial.print("IP address: ");
// Serial.println(WiFi.softAPIP()); // print the IP address
//

(continues on next page)

8.3. 3. Projects 153

Beetlebot 3 in 1 Robot

(continued from previous page)

// WiFi.softAPsetHostname("myHostName"); //print the host name
// Serial.print("HostName: ");
// Serial.println(WiFi.softAPgetHostname()); //print the host name
//
// Serial.print("mac Address: ");
// Serial.println(WiFi.softAPmacAddress()); //print the mac address

WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.print("IP ADDRESS: ");
Serial.println(WiFi.localIP());
if (!MDNS.begin("esp8266")) {
//Serial.println("Error setting up MDNS responder!");
while (1) {
delay(1000);

}
}
// Serial.println("mDNS responder started");
server.begin();
//Serial.println("TCP server started");
MDNS.addService("http", "tcp", 80);
ip_flag = 1;

}

void loop() {
//Serial.println(WiFi.softAPgetStationNum()); //
if(ip_flag == 1)
{
for(int i=3; i>0; i--)
{
Serial.print("IP: ");
Serial.print(WiFi.localIP());
Serial.println('#');
delay(500);

}
ip_flag = 0;

}
MDNS.update();
WiFiClient client = server.available();
if (!client) {
return;

}
//Serial.println("");
while (client.connected() && !client.available()) {
delay(1);

}
String req = client.readStringUntil('\r');

(continues on next page)

154 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

int addr_start = req.indexOf(' ');
int addr_end = req.indexOf(' ', addr_start + 1);
if (addr_start == -1 || addr_end == -1) {
//Serial.print("Invalid request: ");
//Serial.println(req);
return;

}
req = req.substring(addr_start + 1, addr_end);
int len_val = String(req).length();
String M_req = String(req).substring(0,6);
//Serial.println(M_req);
if(M_req == "/btn/u")
{
String s_M_req = String(req).substring(5,len_val);
Serial.print(s_M_req);
Serial.print("#");

}
if(M_req == "/btn/v")
{
String s_M_req = String(req).substring(5,len_val);
Serial.print(s_M_req);
Serial.print("#");

}
client.flush();
String s;
if (req == "/") {
IPAddress ip = WiFi.localIP();
String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + String(ip[2]) + '.' +␣

→˓String(ip[3]);
s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n<!DOCTYPE HTML>\r\n<html>

→˓Hello from ESP8266 at ";
s += ipStr;
s += "</html>\r\n\r\n";
//Serial.println("Sending 200");
Serial.println(WiFi.localIP());
Serial.write('*');
client.println(WiFi.localIP());
ip_flag = 0;

}
else if(req == "/btn/F")
{
Serial.write('F');
client.println(F("F"));

}
else if(req == "/btn/B")
{
Serial.write('B');
client.println(F("B"));

}
else if(req == "/btn/L")
{
Serial.write('L');

(continues on next page)

8.3. 3. Projects 155

Beetlebot 3 in 1 Robot

(continued from previous page)

client.println(F("L"));
}
else if(req == "/btn/R")
{
Serial.write('R');
client.println(F("R"));

}
else if(req == "/btn/S")
{
Serial.write('S');
client.println(F("S"));

}
else if(req == "/btn/a")
{
Serial.write('a');
client.println(F("a"));

}
else if(req == "/btn/b")
{
Serial.write('b');
client.println(F("b"));

}
else if(req == "/btn/c")
{
Serial.write('c');
client.println(F("c"));

}
else if(req == "/btn/d")
{
Serial.write('d');
client.println(F("d"));

}
else if(req == "/btn/e")
{
Serial.write('e');
client.println(F("e"));

}
else if(req == "/btn/f")
{
Serial.write('f');
client.println(F("f"));

}
else if(req == "/btn/g")
{
Serial.write('g');
client.println(F("g"));

}
else if(req == "/btn/z")
{
Serial.write('z');
client.println(F("z"));

}

(continues on next page)

156 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

else if(req == "/btn/i")
{
Serial.write('i');
client.println(F("i"));

}
else if(req == "/btn/j")
{
Serial.write('j');
client.println(F("j"));

}
else if(req == "/btn/k")
{
Serial.write('k');
client.println(F("k"));

}
else if(req == "/btn/y")
{
Serial.write('y');
client.println(F("y"));

}
else if(req == "/btn/l")
{
Serial.write('l');
client.println(F("l"));

}
else if(req == "/btn/m")
{
Serial.write('m');
client.println(F("m"));

}
else if(req == "/btn/n")
{
Serial.write('n');
client.println("n");

}
else if(req == "/btn/o")
{
Serial.write('o');
client.println(F("o"));

}
else if(req == "/btn/p")
{
Serial.write('p');
client.println(F("p"));

}
else if(req == "/btn/q")
{
Serial.write('q');
client.println("q");

}
else if(req == "/btn/x")
{

(continues on next page)

8.3. 3. Projects 157

Beetlebot 3 in 1 Robot

(continued from previous page)

Serial.write('x');
client.println(F("x"));

}
else if(req == "/btn/1")
{
Serial.write('1');
client.println(F("1"));

}
else if(req == "/btn/2")
{
Serial.write('2');
client.println("2");

}
else if(req == "/btn/3")
{
Serial.write('3');
client.println(F("3"));

}
else if(req == "/btn/4")
{
Serial.write('4');
client.println("4");

}
else if(req == "/btn/5")
{
Serial.write('5');
client.println(F("5"));

}
else if(req == "/btn/0")
{
Serial.write('0');
client.println("0");

}
else {
//s = "HTTP/1.1 404 Not Found\r\n\r\n";
//Serial.println("Sending 404");

}

client.print(F("IP : "));
client.println(WiFi.localIP());

}

After the account and password of Wifi is changed, turn the DIP switch of the USB to ESP-01S WIFI module to the
Uart Download end and plug ESP-01S WIFI module into the USB port of your PC.

Note: Set board type and COM port according to the Project 11.1.

And upload the ESP8266 code to the WIFI ESP-01 module.

If the test code is not uploaded successfully, check the board type and the COM port first, then unplug the ESP-01S
WIFI module and restart it.

After the ESP8266 code is successfully uploaded, first unplug the USB to ESP-01S WIFI module serial test expansion
board from the computer, then disconnect the ESP8266 serial WIFI ESP-01 module from the USB to ESP-01S WIFI

158 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

expansion board.

(6)Test Code

Note: Open the IDE and set the board type and the COM port. If there is no Wifi in your home, just open your cellphone
to start the shared Wifi via hotspot.

/*
Project 11.2_2 WiFi control dot matrix
*/
#include <ks_Matrix.h>
Matrix myMatrix(A4,A5);//Define the dot matrix pins in A4,A5
//Array, used to store the data of the pattern, can be calculated yourself
//or retrieved from the touch tool
uint8_t matrix_smile[8]={0x00,0x66,0x00,0x00,0x18,0x42,0x3c,0x00};
uint8_t matrix_heart[8]={0x0e,0x11,0x21,0x42,0x21,0x11,0x0e,0x00};
uint8_t matrix_ten[8]={0x08,0x08,0x08,0x08,0xff,0x08,0x08,0x08};
uint8_t LEDArray[8];
char wifiData;

void setup() {
Serial.begin(9600);
myMatrix.begin(112);
myMatrix.clear();
myMatrix.writeDisplay();
}

void loop() {
if(Serial.available() > 0)
{

wifiData = Serial.read();
Serial.print(wifiData);
if(wifiData == '#')
{
Serial.println("");
}
delay(100);

if(wifiData == 'i')
{
myMatrix.writeDisplay();
matrix_display(matrix_smile);
}
else if(wifiData == 'k')
{
myMatrix.writeDisplay();
matrix_display(matrix_heart);
}
else if(wifiData == 'j')
{
myMatrix.writeDisplay();
matrix_display(matrix_ten);

(continues on next page)

8.3. 3. Projects 159

Beetlebot 3 in 1 Robot

(continued from previous page)

}
else if(wifiData == 'y')
{
myMatrix.clear();
}

}
}

//Dot matrix display pattern function
void matrix_display(unsigned char matrix_value[])
{
for(int i=0; i<8; i++)

{
LEDArray[i]=matrix_value[i];
for(int j=7; j>=0; j--)
{

if((LEDArray[i]&0x01)>0)
myMatrix.drawPixel(j, i,1);
LEDArray[i] = LEDArray[i]>>1;

}
}
myMatrix.writeDisplay();

}

(7)Test Result

Click“Tools” → “Board”, select Arduino Nano and the correct COM portUpload the test code to the Arduino Nano
board.

160 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Insert the ESP8266 serial WIFI ESP-01 module into the Wifi port of the PCB board(Note: don’t disconnect the USB
cable).

Click to open the serial monitor and set baud rate to 9600. Then the serial monitor will show the IP address of
your Wifi. (IP addresses of Wifi sometimes change. If the original IP address can’t be used, detect the IP address of
Wifi again).

8.3. 3. Projects 161

Beetlebot 3 in 1 Robot

Open the app and input the detected Wifi IP address(for example, the IP address in the above figure is 192.168.1.134),

and Slide the button to the right to connect Wifi. At same time, the IP address will be shown at the left
box, which means that Wifi is connected well.

162 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Note: Click buttons on the APP, the blue indicator on the ESP8266 serial WIFI ESP-01 module will flash, indicating
that the APP has been connected to WIFI.

Note: Click buttons on the APP, the blue indicator on the ESP8266 serial WIFI ESP-01 module will flash, indicating
that the APP has been connected to WIFI.

After the APP has connected to the WIFI, start the following operations:

Click buttons on the app, the serial monitor will print some control characters, as shown below.

Interface of App

8.3. 3. Projects 163

Beetlebot 3 in 1 Robot

164 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

Click a “smile”pattern will be displayedclick “”will be shownclick “”will be shown.

8.3. 3. Projects 165

Beetlebot 3 in 1 Robot

Project 11.3: Multi-purpose Car

(1)Description

In this project we will demonstrate multiple functions of the Beetlebot car through app.

(2)Components Required:

(3)Test Code

The code of ESP8266wifi module is not changed, then change the wifi password of the code into yours.

//**
/*
Project 11.3_2_Wifi_Multi_Function
*/
#include<music.h>

#include <Adafruit_NeoPixel.h>
Adafruit_NeoPixel rgb_display_A3 = Adafruit_NeoPixel(4,A3,NEO_GRB + NEO_KHZ800);
#include <Servo.h>
Servo lgservo;
Servo u_servo;
#include <ks_Matrix.h>
uint8_t LEDArray[8];
uint8_t matrix_smile[8]={0x42, 0xa5, 0xa5, 0x00, 0x00, 0x24, 0x18, 0x00};
uint8_t matrix_front[8]={0x18, 0x3c, 0x5a, 0x99, 0x18, 0x18, 0x18, 0x18};
uint8_t matrix_back[8]={0x18, 0x18, 0x18, 0x18, 0x99, 0x5a, 0x3c, 0x18};
uint8_t matrix_left[8]={0x08, 0x04, 0x02, 0xff, 0xff, 0x02, 0x04, 0x08};
uint8_t matrix_right[8]={0x10, 0x20, 0x40, 0xff, 0xff, 0x40, 0x20, 0x10};
uint8_t matrix_stop[8]={0xff, 0x81, 0xbd, 0xa5, 0xa5, 0xbd, 0x81, 0xff};
uint8_t matrix_tsundere[8]={0x00, 0xf7, 0x00, 0x08, 0x14, 0x20, 0x00, 0x00};
uint8_t matrix_squinting[8]={0x00, 0x41, 0x22, 0x14, 0x22, 0x41, 0x1c, 0x00};
uint8_t matrix_despise1[8]={0x00, 0x11, 0x77, 0x00, 0x1c, 0x00, 0x00, 0x00};
uint8_t matrix_speechless[8]={0x00, 0x77, 0x00, 0x1c, 0x14, 0x1c, 0x00, 0x00};
uint8_t matrix_heart[8]={0x00, 0x66, 0x99, 0x81, 0x81, 0x42, 0x24, 0x18};
uint8_t matrix_clear[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

#define ML 4
#define ML_PWM 6
#define MR 2
#define MR_PWM 5
#define buz 3

(continues on next page)

166 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

#define Echo 7
#define Trig 8
#define servo1 9
#define trackL 11
#define trackR 10
#define ir 12
#define neo A3
#define servo2 A0

char val;
char wifiData;
int ip_flag = 1;
int neo_flag=0;

music Music(buz);

Matrix myMatrix(A4,A5);
int matrix_flag;
boolean face1_flag = 0;
boolean face2_flag = 0;
int face_count=0;

boolean neo_state = 0;
String left_str,right_str;
int left_val=255;
int right_val=255;

void setup() {
Serial.begin(9600);
pinMode(ML, OUTPUT);
pinMode(ML_PWM, OUTPUT);
pinMode(MR, OUTPUT);
pinMode(MR_PWM, OUTPUT);
pinMode(buz, OUTPUT);
pinMode(Echo, INPUT);
pinMode(Trig, OUTPUT);
pinMode(trackL, INPUT);
pinMode(trackR, INPUT);
pinMode(ir, INPUT);

rgb_display_A3.begin();
lgservo.attach(A0);
lgservo.write(180);
u_servo.attach(9);
u_servo.write(90);
delay(300);

myMatrix.begin(112);
myMatrix.clear();
matrix_display(matrix_smile);
delay(100);

}

(continues on next page)

8.3. 3. Projects 167

Beetlebot 3 in 1 Robot

(continued from previous page)

void loop() {
if(Serial.available() > 0)
{
val = Serial.read();
Serial.print(val);
if(val == 'u')
{
Serial.println("left speed : ");
left_str = Serial.readStringUntil('#');
left_val = String(left_str).toInt();
Serial.println(left_val);

}
if(val == 'v')
{
Serial.println("right speed : ");
right_str = Serial.readStringUntil('#');
right_val = String(right_str).toInt();
Serial.println(right_val);

}
}
switch(val)
{
case 'F': car_forward(); break;
case 'B': car_back(); break;
case 'L': car_left(); break;
case 'R': car_right(); break;
case 'S': car_stop(); break;
case 'a': tone(buz, 294); delay(200); break;
case 'b': noTone(buz); break;
case 'c': Music.birthday(); break;
case 'd': noTone(buz); break;
case 'e': func_neo1(); break;
case 'f': neo_stop(); break;
case 'g': func_neo2(); break;
case 'z': neo_state = 0; break;
case 'i': face1(); break;
case 'j': face_stop(); break;
case 'k': face2(); break;
case 'y': face1_flag=0; break;
case 'l': tracking(); break;
case 'm': avoid(); break;
case 'n': followLightCar(); break;
case 'o': followCar(); break;

}
}

void followLightCar()
{
int lightL = analogRead(A6);
int lightR = analogRead(A7);

(continues on next page)

168 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

Serial.print(lightL);
Serial.print(" ");
Serial.println(lightR);
if((lightL > 500) && (lightR > 500))
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,150);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,150);

}
else if((lightL > 500) && (lightR <= 500))
{
car_left();

}
else if((lightL <= 500) && (lightR > 500))
{
car_right();

}
else
{
car_stop();

}
}

void followCar()
{
int distance = checkdistance();
Serial.print("distance = ");
Serial.println(distance);
if((distance > 10) && (distance < 35))
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,150);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,150);

}
else if((distance > 6) && (distance <= 10))
{
car_stop();

}
else if(distance <= 6)
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,100);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,100);

}
else
{
car_stop();

}

(continues on next page)

8.3. 3. Projects 169

Beetlebot 3 in 1 Robot

(continued from previous page)

}

void avoid()
{
int distance = checkdistance();
Serial.print("distance = ");
Serial.println(distance);
if(distance <= 8)
{
car_stop();
delay(300);
u_servo.write(180);
delay(500);
int distanceL = checkdistance();
delay(50);
u_servo.write(0);
delay(600);
int distanceR = checkdistance();
delay(50);
if(distanceL > distanceR)
{
car_left();
u_servo.write(90);
delay(400);

}
else
{
car_right();
u_servo.write(90);
delay(400);

}
}
else
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,150);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,150);

}
}

float checkdistance() {
digitalWrite(Trig, LOW);
delayMicroseconds(2);
digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);
float distance = pulseIn(Echo, HIGH) / 58.00;
delay(10);
return distance;

}

(continues on next page)

170 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

void tracking()
{
boolean trackL_val = digitalRead(trackL);
boolean trackR_val = digitalRead(trackR);
Serial.print(trackL_val);
Serial.print(" ");
Serial.println(trackR_val);
if((trackL_val == 1) && (trackR_val == 1))
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,120);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,120);

}
else if((trackL_val == 1) && (trackR_val == 0))
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,150);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,150);

}
else if((trackL_val == 0) && (trackR_val == 1))
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,150);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,150);

}
else
{
car_stop();

}
}

void face1()
{
if(face1_flag==0){
matrix_flag = 1;

}
if(matrix_flag == 1)
{
face_count++;
if(face_count == 6)
{
face_count = 6;

}
matrix_flag = 0;
face1_flag = 1;

}
switch(face_count)
{
case 1: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_smile); break;

(continues on next page)

8.3. 3. Projects 171

Beetlebot 3 in 1 Robot

(continued from previous page)

case 2: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_tsundere);␣
→˓break;
case 3: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_squinting);␣

→˓break;
case 4: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_despise1);␣

→˓break;
case 5: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_speechless);␣

→˓break;
case 6: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_heart); break;

}
}

void face_stop()
{
myMatrix.clear();myMatrix.writeDisplay();

}

void face2()
{
if(face1_flag==0){
matrix_flag = 1;

}
if(matrix_flag == 1)
{
face_count--;
if(face_count == 1)
{
face_count = 1;

}
matrix_flag = 0;
face1_flag = 1;

}
switch(face_count)
{
case 1: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_smile); break;
case 2: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_tsundere);␣

→˓break;
case 3: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_squinting);␣

→˓break;
case 4: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_despise1);␣

→˓break;
case 5: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_speechless);␣

→˓break;
case 6: myMatrix.clear();myMatrix.writeDisplay();matrix_display(matrix_heart); break;

}
}

int matrix_display(uint8_t led_array[8]){
for(int i=0; i<8; i++)
{
LEDArray[i]=led_array[i];
for(int j=7; j>=0; j--)

(continues on next page)

172 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

{
if((LEDArray[i]&0x01)>0)
myMatrix.drawPixel(j, i,1);
LEDArray[i] = LEDArray[i]>>1;

}
}
myMatrix.writeDisplay(); // dot matrix shows

}

void func_neo1()
{
if(neo_state == 0)
{
neo_flag++;
neo_state = 1;

}
if(neo_flag >= 6)
{
neo_flag = 6;

}
switch(neo_flag)
{
case 1: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((100 & 0xffffff) << 16) | ((0 & 0xffffff) <<␣

→˓8) | 0));rgb_display_A3.show();
}
break;
case 2: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((0 & 0xffffff) << 16) | ((100 & 0xffffff) <<␣

→˓8) | 0));rgb_display_A3.show();
}
break;
case 3: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((0 & 0xffffff) << 16) | ((0 & 0xffffff) << 8)␣

→˓| 100));rgb_display_A3.show();
}
break;
case 4: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((100 & 0xffffff) << 16) | ((100 & 0xffffff) <<␣

→˓8) | 0));rgb_display_A3.show();
}
break;
case 5: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((0 & 0xffffff) << 16) | ((100 & 0xffffff) <<␣

→˓8) | 100));rgb_display_A3.show();
}
break;
case 6: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((100 & 0xffffff) << 16) | ((100 & 0xffffff) <<␣

→˓8) | 100));rgb_display_A3.show();
}

(continues on next page)

8.3. 3. Projects 173

Beetlebot 3 in 1 Robot

(continued from previous page)

break;
}

}

void func_neo2()
{
if(neo_state == 0)
{
neo_flag--;
neo_state = 1;

}
if(neo_flag <= 1)
{
neo_flag = 1;

}
switch(neo_flag)
{
case 1: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((100 & 0xffffff) << 16) | ((0 & 0xffffff) <<␣

→˓8) | 0));rgb_display_A3.show();
}
break;
case 2: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((0 & 0xffffff) << 16) | ((100 & 0xffffff) <<␣

→˓8) | 0)); rgb_display_A3.show();
}
break;
case 3: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((0 & 0xffffff) << 16) | ((0 & 0xffffff) << 8)␣

→˓| 100)); rgb_display_A3.show();
}
break;
case 4: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((100 & 0xffffff) << 16) | ((100 & 0xffffff) <<␣

→˓8) | 0));rgb_display_A3.show();
}
break;
case 5: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((0 & 0xffffff) << 16) | ((100 & 0xffffff) <<␣

→˓8) | 100)); rgb_display_A3.show();
}
break;
case 6: for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor(i-1, (((100 & 0xffffff) << 16) | ((100 & 0xffffff) <<␣

→˓8) | 100));rgb_display_A3.show();
}
break;

}

}

(continues on next page)

174 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

void neo_stop()
{
neo_state = 0;
for (int i = 1; i <= 4; i = i + (1)) {
rgb_display_A3.setPixelColor((i)-1, (((0 & 0xffffff) << 16) | ((0 & 0xffffff) << 8)␣

→˓| 0));rgb_display_A3.show();
}

}

void car_forward()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,left_val);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,right_val);

}

void car_back()
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,(255-left_val));
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,(255-right_val));

}

void car_left()
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,127);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,127);

}

void car_right()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,127);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,127);

}

void car_stop()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,0);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,0);

}
//**

8.3. 3. Projects 175

Beetlebot 3 in 1 Robot

(4)APP operation, as shown below:

Note: See the previous lesson of Project 11.2 for how to connect your app to WiFi

Upload the code to the Arduino Nano board, after uploading the code successfully, after power-on, after the mobile
APP is connected to the wifi successfully, we can use the mobile APP to control the beetlebot.

176 Chapter 8. Arduino tutorial

Beetlebot 3 in 1 Robot

8.3. 3. Projects 177

Beetlebot 3 in 1 Robot

178 Chapter 8. Arduino tutorial

CHAPTER

NINE

KIDSBLOCK TUTORIAL

9.1 1. Getting started with Kidsblock software

9.1.1 1. Instruction:

The Kidsblock, based on the Scratch graphical programming software, integrates multiple mainstream mainboards,
sensors as well as modules. It can be programmed by dragging graphical blocks and using the C/C++ programming
language, making programming easy and interesting for children to learn.

9.1.2 2. Download and install KidsBlock software

Windows system

MACOS system

Install Development Board Driver

How to install development board driver

Start your first program Quick Start

9.1.3 3. Interface Setting

After the KidsBlock is installedopen KidsBlock to click <“Beetlebot”<“Connect”

Then the Beetlebot is connected. Click “Go to Editor” to return the code editor.

will change into and into .

This means the Beetlebot is connected to the COM port.

179

https://www.kidsblock.cn/Down/KidsBlock.exe
https://www.kidsblock.cn/Down/KidsBlock-MACOS.dmg
https://kidsblocksite.readthedocs.io/en/latest/driver/
https://kidsblocksite.readthedocs.io/en/latest/function/

Beetlebot 3 in 1 Robot

180 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.1. 1. Getting started with Kidsblock software 181

Beetlebot 3 in 1 Robot

If the Beetlebot is connected, but doesn’t change into .

Just click to connect the COM port.Click then click“Connect”after a while, if
the“Connected”page pops upthe com port will be connected.

182 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.1. 1. Getting started with Kidsblock software 183

Beetlebot 3 in 1 Robot

Then click to switch the mode, the mode will switch to

184 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.1. 1. Getting started with Kidsblock software 185

Beetlebot 3 in 1 Robot

9.2 2. Assemble Beetlebot Robot

Step 1

186 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Step 2

9.2. 2. Assemble Beetlebot Robot 187

Beetlebot 3 in 1 Robot

188 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Step 3

9.2. 2. Assemble Beetlebot Robot 189

Beetlebot 3 in 1 Robot

190 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Step 4

9.2. 2. Assemble Beetlebot Robot 191

Beetlebot 3 in 1 Robot

Step 5

192 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Left Motor Right Motor
L R

8*8 Dot Matrix Display PCB
G G
5V 5V
SDA SDA
SCL SCL

9.2. 2. Assemble Beetlebot Robot 193

Beetlebot 3 in 1 Robot

194 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Step 6

9.2. 2. Assemble Beetlebot Robot 195

Beetlebot 3 in 1 Robot

Step 7

196 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.2. 2. Assemble Beetlebot Robot 197

Beetlebot 3 in 1 Robot

Step 8

198 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Step 9

9.2. 2. Assemble Beetlebot Robot 199

Beetlebot 3 in 1 Robot

Adjust the angle of the servo to 90 degree.

Servo PCB
Brown line G
Red line 5V
Orange line S1D9

Writing the following code in kidsBlock software and upload it to the motherboard, or just open the code provided by
us and upload it to the motherboard.

Keep the ultrasonic sensor parallel to the board

200 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Step 10

9.2. 2. Assemble Beetlebot Robot 201

Beetlebot 3 in 1 Robot

202 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.2. 2. Assemble Beetlebot Robot 203

Beetlebot 3 in 1 Robot

Step 11

204 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Step 12

9.2. 2. Assemble Beetlebot Robot 205

Beetlebot 3 in 1 Robot

206 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.2. 2. Assemble Beetlebot Robot 207

Beetlebot 3 in 1 Robot

Wire up the ultrasonic sensor

Ultrasonic Sensor PCB
Vcc 5V
Trig S2D8
Echo S1D7
Gnd G

208 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Wire up the servo

Servo PCB
Brown line G
Red line 5V
Orange line S1D9

Wire up the left photoresistor

9.2. 2. Assemble Beetlebot Robot 209

Beetlebot 3 in 1 Robot

Left photoresistor PCB
G G
V V
S SA6

Wire up the right photoresistor

Right photoresistor PCB
G G
V V
S SA7

210 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Beetle Robot Car

9.2. 2. Assemble Beetlebot Robot 211

Beetlebot 3 in 1 Robot

We adopt a model 18650 lithium battery with a pointed positive pole, whose power and capacity are not required.

9.3 3. Projects

9.3.1 Project 1: LED Blinking

(1)Description

There is an onboard LED (L) on our Arduino Nano board connected to D13. In this experiment, we WILL make this
LED blink.

LED blinking is the most basic experimental project for Arduino enthusiasts. Let’s get started.

(2)Components Required

(3)Knowledge

On-board LED

LED, the abbreviation of light emitting diodes, consists of Ga, As, P, N chemical compounds and so on. It is easy to
control through the IO port(D13) of the Arduino Nano board.

212 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(4)Test Code

9.3. 3. Projects 213

Beetlebot 3 in 1 Robot

(5)Test Result

Upload the test code to the Arduino Nano board and power up with a USB cable. Then the on-board LED will flash.

9.3.2 Project 2: 6812 RGB

(1)Description

There are 4 RGB LEDs can be widely used in the decoration of buildings, bridges, roads, gardens, courtyards and so
on by colors adjustment.

In this experiment, we will demonstrate different lighting effects with them.

(2)Components Required

214 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(3)Component Knowledge

SK6812RGB:

From the schematic diagram, we can see that these four pixel lighting beads are all connected in series. In fact, no
matter how many they are, we can use a pin to control a light and let it display any color. The pixel point contains a data
latch signal shaping amplifier drive circuit, a high-precision internal oscillator and a 12V high-voltage programmable
constant current control part, which effectively ensures the color of the pixel point light is highly consistent.

The data protocol adopts a single-wire zero-code communication method. After the pixel is powered up and reset, the
S terminal receives the data transmitted from the controller. The first 24bit data sent is extracted by the first pixel and
sent to the data latch of the pixel.

(4)Test Code

The SK6812RGB on the PCB board is controlled by the IO port (A3).

9.3. 3. Projects 215

Beetlebot 3 in 1 Robot

216 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(5)Test Result

Upload the test code to the Arduino Nano board and power up by a USB cable. Then the four RGB lights on the PCB
demonstrate multi-color light effect.

9.3.3 Project 3: Play Music

(1)Description

There is a power amplifier component on the expansion board, which is often used to play music and serve as an external
amplifying device for music playback devices.

In this experiment, we use the speaker amplifier component to play music.

(2)Components Required

9.3. 3. Projects 217

Beetlebot 3 in 1 Robot

(3)Knowledge

Power amplifier modules(equivalent to a passive buzzer) don’t have internal oscillation circuits.

The power amplifier module can chime sounds with different frequency when power it up.

(4)Test Code

The speaker component on the PCB board is controlled by the D3 of the Arduino Nano board.

(5)Test Result

Upload the test code to the Arduino Nano board and power up with a USB cable. Then the power amplifier component
will play music.

218 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3.4 Project 4: 8*8 Dot Matrix

(1)Description

Composed of LED emitting tube diodes, the 8*8 LED dot matrix are applied widely to public information display like
advertisement screen and bulletin board, by controlling LED to show words, pictures and videos, etc.

(2)Components Required

9.3. 3. Projects 219

Beetlebot 3 in 1 Robot

(3)Knowledge

There are different types of matrices, including 4×4, 8×8 and 16×16 and etc. It contains 64 LEDs.

The inner structure of 8×8 dot matrix is shown below.

Every LED is installed on the cross point of row line and column line. When the voltage on a row line increases, and
the voltage on the column line reduces, the LED on the cross point will light up. 8×8 dot matrix has 16 pins. Put the
silk-screened side down and the numbers are 1, 8, 9 and 16 in anticlockwise order as marked below.

220 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

The definition inner pins are shown below:

9.3. 3. Projects 221

Beetlebot 3 in 1 Robot

For instance, to light up the LED on row 1 and column 1, you should increase the voltage of pin 9 and reduce the voltage
of pin 13.

HT16K33 8X8 Dot Matrix

The HT16K33 is a memory mapping and multi-purpose LED controller driver. The max. Display segment numbers
in the device is 128 patterns (16 segments and 8 commons) with a 13*3 (MAX.) matrix key scan circuit. The soft-
ware configuration features of the HT16K33 makes it suitable for multiple LED applications including LED modules
and display subsystems. The HT16K33 is compatible with most microcontrollers and communicates via a two-line
bidirectional I2C-bus.

The picture below is the working schematic of HT16K33 chip:

222 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

We design the drive module of 8*8 dot matrix based on the above principle. We could control the dot matrix by I2C
communication and two pins of microcontroller, according to the above diagram.

Specification:

• Input voltage: 5V

• Rated input frequency: 400KHZ

• Input power: 2.5W

• Input current: 500mA

Introduction for Modulus Tool

The online version of dot matrix modulus tool:http://dotmatrixtool.com/#

Open the link to enter the following page.

9.3. 3. Projects 223

http://dotmatrixtool.com/

Beetlebot 3 in 1 Robot

The dot matrix is 8*8 in this project. So set the height to 8, width to 8; as shown below.

224 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Click Byte order to select Row major.

9.3. 3. Projects 225

Beetlebot 3 in 1 Robot

Generate hexadecimal data from the pattern.

As shown below, the left button of the mouse is for selection while the right is for canceling. Thus you could use them
to draw the pattern you want, then click Generate to yield the hexadecimal data needed.

226 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

The generated hexadecimal code0x00, 0x66, 0x00, 0x00, 0x18, 0x42, 0x3c, 0x00) is what will be displayed, so you
need to save it for next procedure.

(4)Wiring up

8*8 Dot matrix display PCB Board
G G
5V 5V
SDA SDA
SCL SCL

9.3. 3. Projects 227

Beetlebot 3 in 1 Robot

(5)Test Code

The 8*8 dot matrix is controlled by A4SDAand A5SCLof the Arduino Nano board.

228 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 229

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board and power up by a USB cable, the 8*8 dot matrix display will show
show patterns.

9.3.5 Project 5: Servo Rotation

(1)Description

There are two servos on the car. We take the servo connected to pin D9 as an example.

The servo is a motor that can rotate very accurately. It has been widely applied to toy cars, remote control helicopters,
airplanes, robots and other fields. In this project, we will use the Nano motherboard to control the servo to spin.

(2)Components Required

230 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(3)Knowledge

Servo motor is a position control rotary actuator. It mainly consists of a housing, a circuit board, a core-less motor,
a gear and a position sensor. Its working principle is that the servo receives the signal sent by MCU or receiver and
produces a reference signal with a period of 20ms and width of 1.5ms, then compares the acquired DC bias voltage to
the voltage of the potentiometer and obtain the voltage difference output.

When the motor speed is constant, the potentiometer is driven to rotate through the cascade reduction gear, which leads
that the voltage difference is 0, and the motor stops rotating. Generally, the angle range of servo rotation is 0°–180 °.

The rotation angle of servo motor is controlled by regulating the duty cycle of PWM (Pulse-Width Modulation) signal.
The standard cycle of PWM signal is 20ms(50Hz). Theoretically, the width is distributed between 1ms-2ms, but in
fact, it’s between 0.5ms-2.5ms. The width corresponds the rotation angle from 0° to 180°. But note that for different
brand motors, the same signal may have different rotation angles.

In general, servo has three lines in brown, red and orange. The brown wire is grounded, the red one is a positive pole
line and the orange one is a signal line.

9.3. 3. Projects 231

Beetlebot 3 in 1 Robot

(4)Wire up

Servo PCB Board
Brown G
Red 5V
Orange S1D9

(5)Test Code

The servo for controlling the ultrasonic sensor is controlled by the D9 of the Arduino Nano board.

232 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board, and power up with a USB cable. Then the arm of the servo will rotate
to 0°, 45°, 90°, 135° and 180°.

9.3. 3. Projects 233

Beetlebot 3 in 1 Robot

9.3.6 Project 6: Motor Driving and Speed Control

(1)Description

There are many ways to drive motors. This car uses the most commonly used DRV8833 motor driver chip, which
provides a dual-channel bridge electric driver for toys, printers and other motor integration applications.

In this experiment, we use the DRV8833 motor driver chip on the expansion board to drive the two DC motors, and
demonstrate the effect of forward, backward, left-turning, and right-turning.

(2)Components Required

234 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(3)Knowledge

DRV8833 motor driver chip: Dual H-bridge motor driver with current control function, can drive two DC motors, one
bipolar stepper motor, solenoid valve or other inductive loads. Each H-bridge includes circuitry to regulate or limit
winding current.

An internal shutdown function with a fault output pin is used for over-current and short circuit protection, under-voltage
lockout and over-temperature. A low-power sleep mode is also added. Let’s take a look at the schematic diagram of
the DRV8833 motor driver chip driving two DC motors:

9.3. 3. Projects 235

Beetlebot 3 in 1 Robot

If you want to get insight to it, you can check the specification of this chip. Just browse it in the“Attachments”folder.

(4)Specification

Input voltage of logic part: DC 5V

Input voltage of driving part : DC 5V

Working current of logic part: <30mA

Operating current of driving part: <2A

Maximum power dissipation: 10W (T=80℃)

Motor speed: 5V 200 rpm / min

Motor drive form: dual H-bridge drive

Control signal input level: high level 2.3V<Vin<5V, low level -0.3V<Vin<1.5V

Working temperature: -25~130℃

236 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(5)Drive the car to move

From the above diagram, the direction pin of the left motor is D4; the speed pin is D6; D2 is the direction pin of the
right motor; and D5 is speed pin.

PWM drives the robot car. The PWM value is in the range of 0-255. The more the PWM value is set, the faster the
rotation of the motor.

Function D4 D6PWM Left motor D2 D5PWM Right motor
forward LOW 200 clockwise LOW 200 clockwise
Go back HIGH 50 anticlockwise HIGH 50 anticlockwise
Turn left HIGH 200 anticlockwise LOW 200 clockwise
Turn right LOW 200 clockwise HIGH 200 anticlockwise
Stop LOW 0 stop LOW 0 stop

9.3. 3. Projects 237

Beetlebot 3 in 1 Robot

(6)Test Code

238 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(7)Test Result

Upload the test code to the Arduino Nano board, install batteries, turn the power switch to ON end and power up. The
car moves forward for 2s, back for 2s, turn left for 2s, right for 2s and stops for 2s.

9.3.7 Project 7: Ultrasonic Sensor

There is an ultrasonic sensor on the car. It is a very affordable distance-measuring sensor.

The ultrasonic sensor sends a high-frequency ultrasonic signal that human hearing can’t hear. When encountering
obstacles, these signals will be reflected back immediately. After receiving the returned information, the distance
between the sensor and the obstacle will be calculated by judging the time difference between the transmitted signal
and the received signal. It is mainly used for object avoidance and ranging in various robotics projects.

Project 7.1: Ultrasonic Ranging

(1)Description

In this experiment, we use an ultrasonic sensor to measure distance and print the data on a serial monitor.

(2)Components Required

(3)Knowledge

The HC-SR04 ultrasonic sensor uses sonar to determine distance to an object like what bats do. It offers excellent
non-contact range detection with high accuracy and stable readings in an easy-to-use package. It comes complete with
ultrasonic transmitter and receiver modules.

The HC-SR04 or the ultrasonic sensor is being used in a wide range of electronics projects for creating obstacle detection
and distance measuring application as well as various other applications. Here we have brought the simple method to
measure the distance with Arduino and ultrasonic sensor and how to use ultrasonic sensor with Arduino.

9.3. 3. Projects 239

Beetlebot 3 in 1 Robot

Use method and timing chart of ultrasonic module:

1. Setting the delay time of Trig pin of SR04 to 10s at least, which can trigger it to detect distance.

2. After triggering, the module will automatically send eight 40KHz ultrasonic pulses and detect whether there is
a signal return. This step will be completed automatically by the module.

3. If the signal returns, the Echo pin will output a high level, and the duration of the high level is the time from the
transmission of the ultrasonic wave to the return.

Time=Echo pulse width, unit: us

Distancecm=time/ 58

240 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Distance(inch)=time/ 148

The HC-SR04 ultrasonic sensor has four pins: Vcc, Trig, Echo and GND.

The Vcc pin provides power generating ultrasonic pulses and is connected to Vcc/+5V. The GND pin is grounded/GND.

The Trig pin is where the Arduino sends a signal to start the ultrasonic pulse. The Echo pin is where the ultrasonic
sensor sends information about the duration of the ultrasonic pulse stroke to the Arduino control board.

(4)Wiring Up

Ultrasonic Sensor PCB Board
Vcc 5V
Trig S2D8
Echo S1D7
Gnd G

(5)Test Code

The pin Trig and Echo of the ultrasonic sensor are controlled by the D8 and D7 of the Arduino Nano.

9.3. 3. Projects 241

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board, power up with a USB cable, open the serial monitor to click and
set baud rate to 9600.

When you move an object in front of the ultrasonic sensor, it will detect the distance and the serial monitor will show
the distance value.

242 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 243

Beetlebot 3 in 1 Robot

Project 7.2: Ultrasonic Following

(1)Description

In the above experiments, we have learned about the 8*8 dot matrix, motor drivers and speed regulation, ultrasonic
sensors, servos and other hardware. In this experiment, we will combine them to create a follow car with the ultrasonic
sensor. The can can follow an object to move through measuring distance.

(2)Components Required

(3)Working Principle

Detection Detect the front distance Distanceunitcm
Condition 1 Distance8
State Go backset PWM to 100
Condition 2 8distance<13
State stop
Condition 3 13distance<35
State Go forwardset PWM to 100
Condition 4 distance35
State stop

244 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(4)Flow Chart

9.3. 3. Projects 245

Beetlebot 3 in 1 Robot

246 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(5)Test Code

9.3. 3. Projects 247

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the code to the Arduino Nano board, install batteries and turn the switch to the ON end and power up. Then
the car will follow the obstacle to move.

Project 7.3: Dodge obstacles

(1)Description

In this project, we will take advantage of the ultrasonic sensor to detect the distance away from the obstacle so as to
avoid them.

(2)Components Required

248 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(3)Working Principle

9.3. 3. Projects 249

Beetlebot 3 in 1 Robot

250 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(4)Flow Chart

9.3. 3. Projects 251

Beetlebot 3 in 1 Robot

252 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(5)Test Code

9.3. 3. Projects 253

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board, put batteries in the battery holder, turn the power switch to the ON
end and power up. Then the car can automatically dodge obstacles.

9.3.8 Project 8: Line Tracking Sensor

There are two IR line tracking sensors on the car. They are actually two pairs of ST188L3 infrared tubes and used to
detect black and white lines. In this project, we will make a line tracking car.

Project 8.1: Reading Values

(1)Description

In this experiment, we use ST188L3 infrared tubes to detect black and white lines, then print the data on the serial
monitor.

254 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(2)Components Required

(3)Knowledge

Infrared line tracking:

The IR line tracking sensor boasts a pair of ST188L3 infrared tubes. ST188L3 tubes has an infrared emitting diode
and a receiver tube. When the emitting diode emits an infrared signal then received by the receiving tube after being
reflected by the white object. Once the receiving tube receives the signal, the output terminal will output a low level
(0); when the infrared emitting diode emits an infrared signal, and the infrared signal is absorbed by the black object,
a high level (1) will be output, thus realizing the function of detecting signals through infrared rays.

Warning: Reflective optical sensors (including IR line tracking sensors) shouldn’t be applied under sunlight as there is
a lot of invisible light such as infrared and ultraviolet.

Values detected by the line tracking sensor are shown in the table.

The value will be 1 if detecting black or no objects and the value 0 will appear if detecting white objects.

The detected black object or no object represents 1, and the detected white object represents 0.

Left Right ValueBinary
0 0 00
0 1 01
1 0 10
1 1 11

(4)Test Code

The line tracking sensors of the PCB board are controlled by D11 and D10 of the Arduino Nano baord.

9.3. 3. Projects 255

Beetlebot 3 in 1 Robot

(5)Test Result

Upload the test code to the Arduino Nano board, power up with a USB cable, open the serial monitor to click and
set baud rate to 9600.

Put a black thing under the line tracking sensor of the car and move it, you will see different indicators light up, and at
the same time you will see the value on the serial monitor.

The sensitivity can be adjusted by rotating the potentiometer. When the indicator light is adjusted to the critical point
of on and off state, the sensitivity is the highest.

256 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Project 8.2: Line Tracking

(1)Description

We’ve introduced the knowledge of motor drivers, speed regulation, and infrared line tracking. In this experiment, the
car will perform different actions according to the values transmitted by the infrared tracking.

(2)Components Required

9.3. 3. Projects 257

Beetlebot 3 in 1 Robot

(3)Working Principle

Left Right ValueBinary State
0 0 00 Stop
0 1 01 Turn right
1 0 10 Turn left
1 1 11 Move forward

(4)Flow Chart

258 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 259

Beetlebot 3 in 1 Robot

(5)Test Code

260 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board, turn the power switch to the ON end, power up and put the car on a
map we provide. Then it will perform different functions via values sent by line tracking sensors.

9.3.9 Project 9: Light Following

There are two photoresistors on the car. They can vary with the light intensity and send information to the Nano board
to control the car.

Photoresistors can determine and conduct the car to move by detecting light.

Project 9.1: Read Values

(1)Description

In this experiment, we will learn the working principle of the photoresistor.

(2)Components Required

(3)Knowledge

Photoresistor:

It mainly uses a photosensitive resistance element whose resistance varies from the light intensity. The signal terminal
of the sensor is connected to the analog port of the microcontroller. When the light is stronger, the analog value at the
analog port will increase; on the contrary, when the light intensity is weaker, the analog value of the microcontroller
will reduce. In this way, the corresponding analog value can reflect the ambient light intensity.

9.3. 3. Projects 261

Beetlebot 3 in 1 Robot

(4)Wire up

Through the wiring-up diagram, signal pins of two photoresistors are connected to A6 and A7 of the Nano board.

For the following experiment, we use the photoresistor connected to A6 to finish experiments. First, let’s read analog
values.

Left photoresistor PCB board
G G
V V
S SA6

(5)Test Code

The left photoresistor is controlled by the A6 of the Arduino Nano board.

262 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano board, power up with a USB cable, open the serial monitor to click and
set baud to 9600.

When the light intensifies, the analog value will get increased; on the contrary, the analog value will get reduced.

9.3. 3. Projects 263

Beetlebot 3 in 1 Robot

Project 9.2: Light Following Car

(1)Description

We have learned the working principle of photoresistor, motor and speed regulation. In this experiment, we will use a
photoresistor to detect the intensity of light as as to achieve the light following effect.

(2)Components Required

264 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(3)Working Principle

Analog value of the left sensor Analog value of the right sensor Function
>500 >500 Move forward
>500 500 Move to left
500 >500 Move to right
<500 <500 Stop

(4)Wiring up

Left Photoresistor PCB Board Right photoresistor PCB Board

G G G G

V V V V

S SA6 S SA7

9.3. 3. Projects 265

Beetlebot 3 in 1 Robot

(5)Flow Chart

266 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(6)Test Code

The left and right photoresistors are controlled by A6 and A7 of the Arduino Nano board.

9.3. 3. Projects 267

Beetlebot 3 in 1 Robot

268 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(7)Test Result

Upload the test code to the Arduino Nano board, put batteries in the battery holder, turn the power switch to the ON
end and power up. Then the car will follow the light to move.

9.3.10 Project 10: IR Remote Control

Infrared remote controls are everywhere in daily life. It is used to control various home appliances, such as TV, speakers,
video recorders and satellite signal receivers.

The remote control is composed of an IR emitter, an IR receiver and a decoding MCU. In this project, we will make a
IR remote control car.

Project 10.1: IR Remote and Reception

(1)Description

In this experiment, we will combine the IR receiver and the IR remote control to read key values and show them on the
serial monitor.

9.3. 3. Projects 269

Beetlebot 3 in 1 Robot

(2)Components Required

(3)Knowledge

IR Remote Control

It is a device with buttons. When the key is pressed, IR signals will be sent.

Infrared remote control technology is widely used, such as TVs, air conditioners and so on. And it can control air
conditioners and TVs.

The infrared remote control adopts NEC coding, and the signal period is 110ms.

The remote control is shown below:

270 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Infrared (IR) receiver:

It can receive infrared light and be used to detect the infrared signal emitted by the infrared remote control.

It can demodulate the received infrared light signal and convert it back to binary, and then transmit the information to
the microcontroller.

9.3. 3. Projects 271

Beetlebot 3 in 1 Robot

NEC Infrared communication protocol

NEC Protocol

To my knowledge the protocol I describe here was developed by NEC (Now Renesas). I’ve seen very similar protocol
descriptions on the internet, and there the protocol is called Japanese Format.

I do admit that I don’t know exactly who developed it. What I do know is that it was used in my late VCR produced by
Sanyo and was marketed under the name of Fisher. NEC manufactured the remote control IC.

This description was taken from my VCR’s service manual. Those were the days, when service manuals were filled
with useful information!

Features

• 8 bit address and 8 bit command length.

• Extended mode available, doubling the address size.

• Address and command are transmitted twice for reliability.

• Pulse distance modulation.

• Carrier frequency of 38kHz.

• Bit time of 1.125ms or 2.25ms.

Modulation

The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about
21 cycles). A logical “1” takes 2.25ms to transmit, while a logical “0” is only half of that, being 1.125ms. The
recommended carrier duty-cycle is 1/4 or 1/3 .

Protocol

272 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In
this case Address $59 and Command $16 is transmitted. A message is started by a 9ms AGC burst, which was used to
set the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the
Address and Command. Address and Command are transmitted twice. The second time all bits are inverted and can
be used for verification of the received message. The total transmission time is constant because every bit is repeated
with its inverted length. If you’re not interested in this reliability you can ignore the inverted values, or you can expand
the Address and Command to 16 bits each!

Keep in mind that one extra 560µs burst has to follow at the end of the message in order to be able to determine the
value of the last bit.

A command is transmitted only once, even when the key on the remote control remains pressed. Every 110ms a repeat
code is transmitted for as long as the key remains down. This repeat code is simply a 9ms AGC pulse followed by a
2.25ms space and a 560µs burst.

Extended NEC protocol

The NEC protocol is so widely used that soon all possible addresses were used up. By sacrificing the address redun-
dancy the address range was extended from 256 possible values to approximately 65000 different values. This way the
address range was extended from 8 bits to 16 bits without changing any other property of the protocol.

By extending the address range this way the total message time is no longer constant. It now depends on the total
number of 1’s and 0’s in the message. If you want to keep the total message time constant you’ll have to make sure
the number 1’s in the address field is 8 (it automatically means that the number of 0’s is also 8). This will reduce the
maximum number of different addresses to just about 13000.

The command redundancy is still preserved. Therefore each address can still handle 256 different commands.

9.3. 3. Projects 273

Beetlebot 3 in 1 Robot

Keep in mind that 256 address values of the extended protocol are invalid because they are in fact normal NEC protocol
addresses. Whenever the low byte is the exact inverse of the high byte it is not a valid extended address.

(4)Test Code

The IR receiver on the PCB board is controlled by IO port(D12) of the Arduino Nano board.

274 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(5)Test Result

Upload the test code to the Arduino Nano board, power up with a USB cable, open the serial monitor to click and
set to 9600.

Press a key on the IR remote control, you will view a code on the serial monitor. If FFFFFFFF shows up, just ignore it.

Code of each key.

9.3. 3. Projects 275

Beetlebot 3 in 1 Robot

Project 10.2: IR Remote Control Car

(1)Description

In the above experiment, we have learned about the knowledge of the 8*8 dot matrix display, the motor driver and speed
regulation, the infrared receiver and the infrared remote control. In this experiment, we will use the infrared remote
control and the infrared receiver to control the car.

(2)Components Required

(3)Working Principle

Keys Keys Code Functions

FF629D Go forwardDisplay “forward”pattern

FFA857 Go backDisplay “back”pattern

FF22DD Turn leftShow“left” pattern

FFC23D Turn rightShow“right turning”pattern

FF02FD stopshow“stop”pattern

276 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 277

Beetlebot 3 in 1 Robot

(4)Flow Chart

278 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 279

Beetlebot 3 in 1 Robot

(5)Test Code

280 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(6)Test Result

Upload the test code to the Arduino Nano motherboard, install batteries, turn the power switch to the ON end, power
up and press a key of the IR remote control. Then the car will make the corresponding movement.

9.3.11 Project 11: WIFI Control

In this lesson, we control the car through app. The Beetlebot APP sends commanders to the WIFI ESP-01 module then
transfers to it to the microcontroller. By doing this, the car can perform different functions.

9.3. 3. Projects 281

Beetlebot 3 in 1 Robot

Project 11.1: WIFI Test

(1)Description

The ESP8266 serial WiFi ESP-01 module is an ultra-low-power UART-WiFi transparent transmission module and
designed for mobile devices and IoT applications.

It can achieve networking functions by connecting devices to Wifi internet.

(2)Components Required

(3)Knowledge

USB to ESP-01S WiFi module serial shield:

It is suitable for the ESP-01S WiFi module. Turn the DIP switch on the USB to ESP-01S WiFi module serial Expansion
Boardto Flash Boot, and plug into computer’s USB port. You can use serial debugging tool to test the AT command.

Turn the DIP switch on the USB to ESP-01S WiFi module serial expansion board to the UartDownload, ESP-01 module
is at download mode. You can download the firmware to ESP-01 module using AT firmware.

ESP8266 serial WIFI ESP-01

282 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

ESP8266 serial WiFi ESP-01 is an ultra-low-power UART-WiFi transparent transmission module. It can be widely
used in smart grids, intelligent transportation, smart furniture, handheld devices, industrial control and other fields.

Features

• Support wireless 802.11 b/g/n standards

• Support STA/AP/STA+AP three modes of operation

• Built-in TCP/IP protocol stack to support multi-channel TCP Client connections

• Supports many Socket AT commands

• Supports UART / GPIO data communication interface

• Supports Smart Link smart networking function

• Supports remote firmware upgrades(OTA)

• Built-in 32-bit MCU, can also be used as an application processor

• Ultra-low-power and highly integrated Wi-Fi chip for battery-powered applications

• Working temperature range: -40℃ to + 125℃

• 3.3V single power supply

(4)Functions

A. Main functions

The main functions that can be achieved by ESP8266 include: serial port transparent transmission , PWM regulation,
GPIO control.

※Serial port transparent transmission: The transmission is reliable with a maximum transmission rate of 460800bps.

※PWM regulation: Adjusting lights and tricolor LED, motor speed control, etc.

※GPIO control: Control switch, relay, etc.

Working modes

The ESP8266 module supports three operating modes, STA/AP/STA+AP.

STA mode: The ESP8266 module can access to the Internet through a router, so the mobile phone or computer can
remotely control the device through the Internet.

9.3. 3. Projects 283

Beetlebot 3 in 1 Robot

AP mode: ESP8266 module, as a hotspot, allows the direct communication with the module and cellphones/computers,
achieving wireless control of the local area network (LAN).

STA+AP mode: two modes coexist, that is, the Internet can achieve free switch.

284 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(5)Applications

Serial CH340 to Wi-Fi

Industrial transparent transmission DTU

Wi-Fi remote monitoring/control

Toy industry

Color LED control

Integrated management of fire protection and security intelligence.

Smart card terminals, wireless POS machines, Wi-Fi cameras, handheld devices,etc.

(6)Insert the Wifi serial port expansion board into the USB port of your PC

Insert the ESP8266 serial WIFI ESP-01 module into the USB to ESP-01S WIFI expansion board.

Turn the DIP switch of the USB to ESP-01S WIF expansion board to UartDownload end and plug it to the USB port
of your computer.

9.3. 3. Projects 285

Beetlebot 3 in 1 Robot

(7)APP:

For Android system

(1). Turn on the location services of the mobile phone and connect the wifi of yourself.

(2). Search Beetlebot in Google Play, or open the following link to download and install the app.

https://play.google.com/store/apps/details?id=com.keyestudio.beetlecar

286 Chapter 9. Kidsblock tutorial

https://play.google.com/store/apps/details?id=com.keyestudio.beetlecar

Beetlebot 3 in 1 Robot

9.3. 3. Projects 287

Beetlebot 3 in 1 Robot

288 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(3). Click Open button and enter interface of the app.

9.3. 3. Projects 289

Beetlebot 3 in 1 Robot

290 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(4). Input the detected Wifi IP address(for example, the IP address in the serial monitor is 192.168.1.134), and Slide

the button to the right to connect Wifi. At same time, the IP address will be shown at the left box, which
means that Wifi is connected well.

9.3. 3. Projects 291

Beetlebot 3 in 1 Robot

Note: Click buttons on the APP, the blue indicator on the ESP8266 serial WIFI ESP-01 module will flash, indicating
that the APP has been connected to WIFI.

For IOS system

(1). Turn on the location services of the mobile phone and connect the wifi of yourself.

292 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(2). Open App Store

(3). Search Beetlebot in App Storeclick“ ”to download Beetlebot APP.

9.3. 3. Projects 293

Beetlebot 3 in 1 Robot

(4). Click Open button and enter interface of the app.

294 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(5). Input the detected Wifi IP address(for example, the IP address in the serial monitor is 192.168.1.134), and Slide

the button to the right to connect Wifi. At same time, the IP address will be shown at the left box, which
means that Wifi is connected well.

9.3. 3. Projects 295

Beetlebot 3 in 1 Robot

Note: Click buttons on the APP, the blue indicator on the ESP8266 serial WIFI ESP-01 module will flash, indicating
that the APP has been connected to WIFI.

296 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(8)Add the ESP8266 control board

Click to enter the main page, select the control board needed. In this project, we select the
Plus board and click Connect.

Then it is connected, Click Go to Editor to return the code editor. Icon will change into

and will change into . This means the Plus board
is connected to the COM port.

9.3. 3. Projects 297

Beetlebot 3 in 1 Robot

298 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

If the ESP8266 board is connected , but icon doesn’t change into

. You need to click to connect the COM port. Click

and Connect.

Then you will find a page pop up, showing Connected.

9.3. 3. Projects 299

Beetlebot 3 in 1 Robot

300 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(9)Add the Beetlebot wifi module

Click to enter sensor/module expansion interface and click“Beetlebot wifi”, “Not loaded”will switch
into“loaded”. Then the Beetlebot wifi module will be added.

Click to return the code editor, then you will view the Beetlebot wifi module.

9.3. 3. Projects 301

Beetlebot 3 in 1 Robot

302 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 303

Beetlebot 3 in 1 Robot

(10)ESP8266 Code

If there is no wifi in your home, just enable your shared wifi on the phone.

NoteYou need to change the wifi name and password into yours.

After the Wifi name and Wifi password are changed, plug the USB to ESP-01S WIFI expansion board to the USB port
of the computer, turn its DIP switch to the “Uart Download” end and click “Upload” .

Upload the ESP8266 code to the ESP8266 to WIFI ESP-01 module.

Note: if the code is uploaded successfully, reboot the ESP-01S WIFI expansion board.

304 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

After the code is uploaded. Unplug the USB to ESP-01S WIFI expansion board and ESP8266 serial WIFI ESP-01
module.

9.3. 3. Projects 305

Beetlebot 3 in 1 Robot

(11)Interface the Arduino Nano board

(12)Set the interface of Beetlebot:

Open KidsBlock to click to enter the main page. Select Beetlebotand click Connectthen the
Beetlebot is connected.

Click“Go to Editor” to return code editor, will change into and

into ; this indicates the device is connected to the port.

306 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 307

Beetlebot 3 in 1 Robot

308 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Then click to switch mode. The will change into

9.3. 3. Projects 309

Beetlebot 3 in 1 Robot

310 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

(13)Arduino Nano Test Code

9.3. 3. Projects 311

Beetlebot 3 in 1 Robot

(14)Test Result

Click Upload to upload the test code to the Arduino Nano board.

Then insert the ESP8266 serial WIFI ESP-01module into the WiFi port of the PCB board.

(Notekeep the USB cable connected.)

312 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Click and set baud rate to 9600. Then the serial monitor will show your IP address of Wifi.

The IP address of Wifi sometimes changes. If the original doesn’t change, check the IP address of Wifi again.

9.3. 3. Projects 313

Beetlebot 3 in 1 Robot

Input the detected Wifi IP address(for example, the IP address in the serial monitor is 192.168.1.134), and Slide the

button to the right to connect Wifi. At same time, the IP address will be shown at the left box, which means
that Wifi is connected well.

314 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Note: Click buttons on the APP, the blue indicator on the ESP8266 serial WIFI ESP-01 module will flash, indicating
that the APP has been connected to WIFI.

After the APP has connected to the WIFI, start the following operations:

Click buttons on the app, the serial monitor will print some control characters, as shown below.

9.3. 3. Projects 315

Beetlebot 3 in 1 Robot

Interface of App

316 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

Click a“smile”pattern will be displayedclick ,“”will be shownclick ,“”will be shown.

9.3. 3. Projects 317

Beetlebot 3 in 1 Robot

Project 11.2: Multi-purpose Car

(1)Description

In this project we will demonstrate multiple functions of the Beetlebot car through app.

(2)Components Required

(3)Test Code

The code of ESP8266wifi module is not changed, then change the wifi password of the code into yours.

318 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 319

Beetlebot 3 in 1 Robot

(4)APP operation, as shown below:

Note: See the previous lesson of Project 11.1 for how to connect your app to WiFi

Click to control the car to move in different directions ; click to

control the SK6812RGB to show different colors click to control the 8*8 dot matrix display show different
patterns.

320 Chapter 9. Kidsblock tutorial

Beetlebot 3 in 1 Robot

9.3. 3. Projects 321

Beetlebot 3 in 1 Robot

322 Chapter 9. Kidsblock tutorial

CHAPTER

TEN

SOCCER TUTORIAL

323

Beetlebot 3 in 1 Robot

10.1 1. Description

Can you imagine that a robot can play soccer? This idea has became realistic. As we know, the RoboCup championship
is generally held each year. In this part, we will create a soccer robot to play soccer.

10.2 2. How to install the soccer robot:

Step 1:

Remove two photoresistors first

Step 2:

324 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

Step 3:

10.2. 2. How to install the soccer robot: 325

Beetlebot 3 in 1 Robot

326 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

Step 4:

10.2. 2. How to install the soccer robot: 327

Beetlebot 3 in 1 Robot

Step 5:

328 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

10.2. 2. How to install the soccer robot: 329

Beetlebot 3 in 1 Robot

Step 6:

330 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

Step 7:

10.2. 2. How to install the soccer robot: 331

Beetlebot 3 in 1 Robot

Note the installation direction of the part marked by the red circle

332 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

Step 8:

10.2. 2. How to install the soccer robot: 333

Beetlebot 3 in 1 Robot

Step 9:

334 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

Adjust the angle of the claw. Then make it close and face front.

10.2. 2. How to install the soccer robot: 335

Beetlebot 3 in 1 Robot

Step 10:

Set the angle of the servo to 180 degree

336 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

Upload the code of the servo to the main board of the Beetlebot car, as shown below

#include <Servo.h>
Servo myservo; // create servo object to control a servo

void setup() {
myservo.attach(A0); // attaches the servo on pin A0 to the servo object

}

void loop() {
myservo.write(180); // tell servo to go to position

}

You can also initialize the angle of the servo through the following code

Keep the claw close and face front before installing the gear

10.2. 2. How to install the soccer robot: 337

Beetlebot 3 in 1 Robot

Step 11:

Required Parts

338 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

10.2. 2. How to install the soccer robot: 339

Beetlebot 3 in 1 Robot

Step 12:

Required Parts

340 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

10.2. 2. How to install the soccer robot: 341

Beetlebot 3 in 1 Robot

Step 13:

We adopt a model 18650 lithium battery with a pointed positive pole, whose power and capacity are not required.

342 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

10.3 3. Install a soccer goal

Step 1:

10.3. 3. Install a soccer goal 343

Beetlebot 3 in 1 Robot

Step 2:

344 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

10.3. 3. Install a soccer goal 345

Beetlebot 3 in 1 Robot

Step 3:

346 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

10.4 4. Codes:

10.4.1 (1)Arduino Code

#include <Servo.h>
Servo lgservo;
#define ML 4
#define ML_PWM 6
#define MR 2
#define MR_PWM 5
#define servo2 A0

char val;
(continues on next page)

10.4. 4. Codes: 347

Beetlebot 3 in 1 Robot

(continued from previous page)

char wifiData;

void setup() {
Serial.begin(9600);
pinMode(ML, OUTPUT);
pinMode(ML_PWM, OUTPUT);
pinMode(MR, OUTPUT);
pinMode(MR_PWM, OUTPUT);

lgservo.attach(A0);
lgservo.write(180);
delay(1000);
lgservo.write(160);

}

void loop() {
if(Serial.available() > 0)
{
val = Serial.read();
Serial.print(val);

}
switch(val)
{
case 'F': car_forward(); break;
case 'B': car_back(); break;
case 'L': car_left(); break;
case 'R': car_right(); break;
case 'S': car_stop(); break;
case 'p': lgservo.write(180); break;
case 'x': lgservo.write(160); break;

}
}

void car_forward()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,127);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,127);

}

void car_back()
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,127);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,127);

}

void car_left()
{

(continues on next page)

348 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

digitalWrite(ML,HIGH);
analogWrite(ML_PWM,150);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,105);

}

void car_right()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,105);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,150);

}

void car_stop()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,0);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,0);

}

10.4. 4. Codes: 349

Beetlebot 3 in 1 Robot

350 Chapter 10. Soccer tutorial

Beetlebot 3 in 1 Robot

10.4.2 (2)Kidsblock Code

10.4. 4. Codes: 351

Beetlebot 3 in 1 Robot

10.5 5. Test Result

Note: Please refer to the Project 11.2 of the Arduino tutorial for downloading and operating the APP.

Build up the soccer goal with building blocks and place it at fixed location, connect the robot car through Wifi.

Put a small soccer in the middle of the claw of the robot car, press and hold down the button to enable the

claw to hold the soccer, then press buttons to adjust the car’s movement direction so as to put

the soccer close to the soccer goal. At last, release the button to allow the soccer to drop on the floor and
roll to the soccer goal. If not, repeat the above step to shoot the goal.

If your friend owns this kind of soccer robot, you guys can hold a soccer match. It sounds amazing, right?

352 Chapter 10. Soccer tutorial

CHAPTER

ELEVEN

CATAPUL TUTORIAL

353

Beetlebot 3 in 1 Robot

11.1 1. Description

A catapult is a ballistic device used to launch a projectile a great distance without the aid of gunpowder or other
propellants – particularly various types of ancient and medieval siege engines. . . . We will make a catapult with LEGO
building blocks. Equipped with servos and gears, the car has LEGO tower used to carry projectiles.

As the servo rotates to a proper angle then push the long arm backward a projectile will be launched.

11.2 2. How to build up a catapult

Step 1:

354 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 2:

11.2. 2. How to build up a catapult 355

Beetlebot 3 in 1 Robot

Step 3:

356 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

11.2. 2. How to build up a catapult 357

Beetlebot 3 in 1 Robot

Step 4:

358 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 5:

11.2. 2. How to build up a catapult 359

Beetlebot 3 in 1 Robot

360 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 6:

11.2. 2. How to build up a catapult 361

Beetlebot 3 in 1 Robot

Step 7:

362 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

11.2. 2. How to build up a catapult 363

Beetlebot 3 in 1 Robot

Step 8:

364 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 9:

11.2. 2. How to build up a catapult 365

Beetlebot 3 in 1 Robot

366 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 10:

11.2. 2. How to build up a catapult 367

Beetlebot 3 in 1 Robot

Step 11:

368 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

11.2. 2. How to build up a catapult 369

Beetlebot 3 in 1 Robot

Step 12:

370 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 13:

11.2. 2. How to build up a catapult 371

Beetlebot 3 in 1 Robot

372 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 14:

11.2. 2. How to build up a catapult 373

Beetlebot 3 in 1 Robot

Step 15:

374 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

11.2. 2. How to build up a catapult 375

Beetlebot 3 in 1 Robot

Step 16:

376 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 17:

Set the angle of the servo to 0 degree

11.2. 2. How to build up a catapult 377

Beetlebot 3 in 1 Robot

Upload the code of the servo to the main board of the Beetlebot car, as shown below

#include <Servo.h>
Servo myservo; // create servo object to control a servo

void setup() {
myservo.attach(A0); // attaches the servo on pin A0 to the servo object

}

void loop() {
myservo.write(0); // tell servo to go to position

}

You can also initialize the angle of the servo through the following code

378 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Check the Scratch-KidsBlock code as followsthen upload the code to the main board of the Beetlebot car

11.2. 2. How to build up a catapult 379

Beetlebot 3 in 1 Robot

Step 18:

380 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

Step 19: Wire up

Interface the servo

We adopt a model 18650 lithium battery with a pointed positive pole, whose power and capacity are not required.

11.2. 2. How to build up a catapult 381

Beetlebot 3 in 1 Robot

11.3 3. Code:

11.3.1 (1) Arduino Code

#include <Servo.h>
Servo lgservo;
#define ML 4
#define ML_PWM 6
#define MR 2
#define MR_PWM 5
#define servo2 A0

char val;
char wifiData;
boolean servo_flag = 1;

void setup() {
Serial.begin(9600);
pinMode(ML, OUTPUT);
pinMode(ML_PWM, OUTPUT);
pinMode(MR, OUTPUT);
pinMode(MR_PWM, OUTPUT);

lgservo.attach(A0);
lgservo.write(0);

}

void loop() {
if(Serial.available() > 0)
{
val = Serial.read();
Serial.print(val);

}
switch(val)
{
case 'F': car_forward(); break;
case 'B': car_back(); break;
case 'L': car_left(); break;

(continues on next page)

382 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

case 'R': car_right(); break;
case 'S': car_stop(); break;
case 'p': lgservo.write(55);servo_flag = 1; break;
case 'x': servo_down(); break;

}
}

void servo_down()
{
while(servo_flag == 1)
{
for(int i=55; i>0; i--)
{
lgservo.write(i);
delay(2);

}
servo_flag = 0;

}

}

void car_forward()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,255);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,255);

}

void car_back()
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,0);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,0);

}

void car_left()
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,150);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,105);

}

void car_right()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,105);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,150);

(continues on next page)

11.3. 3. Code: 383

Beetlebot 3 in 1 Robot

(continued from previous page)

}

void car_stop()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,0);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,0);

}

384 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

11.3. 3. Code: 385

Beetlebot 3 in 1 Robot

11.3.2 (2) Kidsblock Code

386 Chapter 11. Catapul tutorial

Beetlebot 3 in 1 Robot

11.4 4. Test Result

Note: Please refer to the Project 11.2 of the Arduino tutorial for downloading and operating the APP.

Build up a few target objects with building blocks(object A, B, C, D, E) and keep them in a certain distance away the
catapult and connect Wifi.

Click to make the car to face the object A, hold down the button to drive the
catapult to launch a building block.

Then release the button to make the long arm return to the original state. Next, let’s check if the object A is
hit by the launched block

You can repeat above steps to hit the object B, C and D.

11.4. 4. Test Result 387

Beetlebot 3 in 1 Robot

388 Chapter 11. Catapul tutorial

CHAPTER

TWELVE

HANDLING TUTORIAL

389

Beetlebot 3 in 1 Robot

12.1 1. Description

Among many industrial robots, handling robots are undoubtedly effective, applied in industrial manufacturing, ware-
housing and logistics, tobacco, medicine, food, chemical and other industries, or in post offices, libraries, ports and
parking lots. In this experiment, we will use LEGO blocks to build a handling robot to carry things.

12.2 2. How to build up a handling robot:

Step 1:

Dismantle the ultrasonic sensor

Step 2:

390 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

Step 3:

12.2. 2. How to build up a handling robot: 391

Beetlebot 3 in 1 Robot

392 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

Step 4:

12.2. 2. How to build up a handling robot: 393

Beetlebot 3 in 1 Robot

Step 5:

394 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

12.2. 2. How to build up a handling robot: 395

Beetlebot 3 in 1 Robot

Step 6:

396 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

Step 7:

12.2. 2. How to build up a handling robot: 397

Beetlebot 3 in 1 Robot

398 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

Step 8:

12.2. 2. How to build up a handling robot: 399

Beetlebot 3 in 1 Robot

Step 9:

400 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

12.2. 2. How to build up a handling robot: 401

Beetlebot 3 in 1 Robot

Step 10:

Set the angle of the servo to 180 degree

402 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

Upload the code of the servo to the main board of the Beetlebot car, as shown below

#include <Servo.h>

Servo myservo; // create servo object to control a servo

void setup() {
myservo.attach(A0); // attaches the servo on pin A0 to the servo object

}

void loop() {
myservo.write(180); // tell servo to go to position

}

You can also initialize the angle of the servo through the following code

12.2. 2. How to build up a handling robot: 403

Beetlebot 3 in 1 Robot

Step 11:

404 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

12.2. 2. How to build up a handling robot: 405

Beetlebot 3 in 1 Robot

406 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

Step 12: Wire up servo

12.2. 2. How to build up a handling robot: 407

Beetlebot 3 in 1 Robot

We adopt a model 18650 lithium battery with a pointed positive pole, whose power and capacity are not required.

12.3 3. Code:

12.3.1 (1)Arduino Code

#include <Servo.h>
Servo lgservo;
#define ML 4
#define ML_PWM 6
#define MR 2

(continues on next page)

408 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

(continued from previous page)

#define MR_PWM 5
#define servo2 A0

char val;
char wifiData;

void setup() {
Serial.begin(9600);
pinMode(ML, OUTPUT);
pinMode(ML_PWM, OUTPUT);
pinMode(MR, OUTPUT);
pinMode(MR_PWM, OUTPUT);

lgservo.attach(A0);
lgservo.write(180);

}

void loop() {
if(Serial.available() > 0)
{
val = Serial.read();
Serial.print(val);

}
switch(val)
{
case 'F': car_forward(); break;
case 'B': car_back(); break;
case 'L': car_left(); break;
case 'R': car_right(); break;
case 'S': car_stop(); break;
case 'p': lgservo.write(130); break;
case 'x': lgservo.write(180); break;

}
}

void car_forward()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,127);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,127);

}

void car_back()
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,127);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,127);

}

(continues on next page)

12.3. 3. Code: 409

Beetlebot 3 in 1 Robot

(continued from previous page)

void car_left()
{
digitalWrite(ML,HIGH);
analogWrite(ML_PWM,150);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,105);

}

void car_right()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,105);
digitalWrite(MR,HIGH);
analogWrite(MR_PWM,150);

}

void car_stop()
{
digitalWrite(ML,LOW);
analogWrite(ML_PWM,0);
digitalWrite(MR,LOW);
analogWrite(MR_PWM,0);

}

410 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

12.3. 3. Code: 411

Beetlebot 3 in 1 Robot

12.3.2 (3)Kidsblock Code**

412 Chapter 12. Handling tutorial

Beetlebot 3 in 1 Robot

12.4 4. Test Result

Note: Please refer to the Project 11.2 of the Arduino tutorial for downloading and operating the APP.

Connect Wifi, click buttons to make the car to move toward building blocks and put some
building blocks on the robot.

Then press to drive the robot to move.

Hold down the button to drive the robot to drop building blocks, then building blocks can be conveyed

12.4. 4. Test Result 413

	1. Libraries, All Codes and Other Details:
	2. Description
	3. Features
	4. Specification
	5. Kit List
	6. Keyestudio Nano Board
	1. Description:
	2. Specification:
	3. Pins:

	7. PCB Board
	Arduino tutorial
	1. Get started with Arduino
	2. Assemble Beetlebot Robot
	3. Projects
	Project 1: LED Blinking
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code：
	(5)Test Result：

	Project 2: 6812 RGB
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code：
	(5)Test Result：

	Project 3: Play Music
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code：
	(5)Test Result：

	Project 4: 8*8 Dot Matrix
	(1)Description：
	(2)Components Required：
	(3)HT16K33 8X8 Dot Matrix：
	(4)Specification:
	(5)Introduction for Modulus Tool：
	(6)Wiring up：
	(7)Test Code：
	(8)Test Result：

	Project 5: Servo Rotation
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Wire up：
	(5)Test Code：
	(6)Test Result：

	Project 6: Motor Driving and Speed Control
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Specification：
	(5)Drive the car to move：
	(6)Test Code：
	(7)Test Result：

	Project 7: Ultrasonic Sensor
	Project 7.1: Ultrasonic Ranging
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Wiring Up
	(5)Test Code：
	(6)Test Result：

	Project 7.2: Light Following
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Flow Chart：
	(5)Test Code：
	(6)Test Result：

	Project 7.3: Dodge obstacles
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Flow Chart：
	(5)Test Code：
	(6)Test Result：

	Project 8: Line Tracking Sensor
	Project 8.1: Reading Values
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code：
	(5)Test Result：

	Project 8.2: Line Tracking
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Flow Chart：
	(5)Test Code：
	(6)Test Result：

	Project 9: Light Following
	Project 9.1 Read Values
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Wire up：
	(5)Test Code：
	(6)Test Result：

	Project 9.2: Light Following Car
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Wiring up：
	(5)Flow Chart：
	(6)Test Code：
	(7)Test Result：

	Project 10: IR Remote Control
	Project 10.1: IR Remote and Reception
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code：
	(5)Test Result:

	Project 10.2: IR Remote Control Car
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Flow Chart：
	(5)Test Code：
	(6)Test Result：

	Project 11: WIFI Control
	Project 11.1: WIFI Test
	(1)Description：
	(2)Components Required:
	(3)Knowledge：
	(4)Functions：
	(5)Insert the Wifi serial port expansion board into the USB port of your PC:
	(6)Set up the Esp8266 development environment:
	(6)Test Code：
	(7)Test Result：

	Project 11.2 : Control 8*8 Dot Matrix Display Via WIFI
	(1)Description：
	(2)Components Required:
	(3)Insert the Wifi serial port expansion board into the USB port of your PC:
	(4)APP:
	(5)ESP8266 Code：
	(6)Test Code：
	(7)Test Result：

	Project 11.3: Multi-purpose Car
	(1)Description：
	(2)Components Required:
	(3)Test Code：
	(4)APP operation, as shown below:

	Kidsblock tutorial
	1. Getting started with Kidsblock software
	1. Instruction:
	2. Download and install KidsBlock software
	3. Interface Setting：

	2. Assemble Beetlebot Robot
	3. Projects：
	Project 1: LED Blinking
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code
	(5)Test Result：

	Project 2: 6812 RGB
	(1)Description：
	(2)Components Required：
	(3)Component Knowledge
	(4)Test Code：
	(5)Test Result：

	Project 3: Play Music
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code：
	(5)Test Result：

	Project 4: 8*8 Dot Matrix
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Wiring up：
	(5)Test Code：
	(6)Test Result：

	Project 5: Servo Rotation
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Wire up：
	(5)Test Code：
	(6)Test Result：

	Project 6: Motor Driving and Speed Control
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Specification：
	(5)Drive the car to move
	(6)Test Code：
	(7)Test Result：

	Project 7: Ultrasonic Sensor
	Project 7.1: Ultrasonic Ranging
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Wiring Up
	(5)Test Code：
	(6)Test Result：

	Project 7.2: Ultrasonic Following
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Flow Chart：
	(5)Test Code：
	(6)Test Result：

	Project 7.3: Dodge obstacles
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Flow Chart：
	(5)Test Code：
	(6)Test Result：

	Project 8: Line Tracking Sensor
	Project 8.1: Reading Values
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code：
	(5)Test Result：

	Project 8.2: Line Tracking
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Flow Chart：
	(5)Test Code：
	(6)Test Result：

	Project 9: Light Following
	Project 9.1: Read Values
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Wire up：
	(5)Test Code：
	(6)Test Result：

	Project 9.2: Light Following Car
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Wiring up：
	(5)Flow Chart：
	(6)Test Code：
	(7)Test Result：

	Project 10: IR Remote Control
	Project 10.1: IR Remote and Reception
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Test Code：
	(5)Test Result：

	Project 10.2: IR Remote Control Car
	(1)Description：
	(2)Components Required：
	(3)Working Principle：
	(4)Flow Chart：
	(5)Test Code
	(6)Test Result：

	Project 11: WIFI Control
	Project 11.1: WIFI Test
	(1)Description：
	(2)Components Required：
	(3)Knowledge：
	(4)Functions
	(5)Applications
	(6)Insert the Wifi serial port expansion board into the USB port of your PC
	(7)APP:
	(8)Add the ESP8266 control board：
	(9)Add the Beetlebot wifi module：
	(10)ESP8266 Code：
	(11)Interface the Arduino Nano board
	(12)Set the interface of Beetlebot:
	(13)Arduino Nano Test Code：
	(14)Test Result：

	Project 11.2: Multi-purpose Car
	(1)Description：
	(2)Components Required：
	(3)Test Code：
	(4)APP operation, as shown below:

	Soccer tutorial
	1. Description：
	2. How to install the soccer robot:
	3. Install a soccer goal
	4. Codes:
	(1)Arduino Code：
	(2)Kidsblock Code：

	5. Test Result：

	Catapul tutorial
	1. Description：
	2. How to build up a catapult
	3. Code:
	(1) Arduino Code：
	(2) Kidsblock Code：

	4. Test Result：

	Handling tutorial
	1. Description：
	2. How to build up a handling robot:
	3. Code:
	(1)Arduino Code：
	(3)Kidsblock Code：**

	4. Test Result：

